
Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

1

Working with the Kaltura Reach API
Last Modified on 08/11/2025 4:13 pm IDT

This article is designated for administrators.

About

Kaltura Reach framework allows vendors to process Kaltura customer media and return enrichment assets, such as captions,
transcripts, audio description, etc.

Vendors get access to special APIs (entryVendorTask - Kaltura VPaaS API Documentation) which allows them to periodically pull
new Reach tasks (each Task will contain metadata required for the vendor to process the request), process them and finally,
update the customer's Kaltura account with the resulting assets and/or metadata.

Vendors can choose to implement the integration using a Kaltura client library to add, list, update or delete objects from Kaltura.
Kaltura supports a wide range of client libraries in different languages (Native Client Libraries - Kaltura VPaaS API Documentation)
or the vendor can choose to use the REST API (Kaltura VPaaS API Overview - Kaltura VPaaS API Documentation).

Reach Vendor API - Basic Flow (for VOD assets)

https://developer.kaltura.com/api-docs/service/entryVendorTask
https://developer.kaltura.com/api-docs/Client_Libraries
https://developer.kaltura.com/api-docs/Overview
https://dyzz9obi78pm5.cloudfront.net/app/image/id/66fe6e0d7bd6917e0c0a9613/n/kaltura-reach-api-flow-for-vod.png
https://dyzz9obi78pm5.cloudfront.net/app/image/id/67052f5e1f97fbe9350b8e9b/n/kaltura-api-flow-for-live-cb936d.png

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

2

Reach Vendor API - Basic Flow (for Live sessions)

General guidelines

Encryption - Requests have to be sent over HTTPS. Kaltura's clients require this when accessing their data or making API calls
which result in new data.

Client tags - This property is used by Kaltura to track which application issued which call. With Reach we make another use of
this field; to ensure Kaltura has a way to determine the Task processing E2E. The vendor should follow the following standards:

If you use a client library, the client library exposes the ability to define a clientTag for each API request:

For non-task-specific API calls, the clientTag should be set as '<default clientTag>_vendorName-vendorPartnerId”.
(<default ClientTag> consists of the client library's programming language and the library's build date).

Example: 'php5:18-11-11_vendorName_12345'

For task-specific API calls, the Task ID should also be added to the clientTag .

Example, for a Task ID (9292) and vendor account id (12345), the resulting clientTag should be "php5:18-11-
11_vendorName-12345-9292".

If you use direct API calls, then each API request should include a clientTag parameter within the request body that will
include the vendor Application Version, for instance:

For non-task-specific API calls, the clientTag should be set to be '<default clientTag>_vendorName-vendorPartnerId”.
(<default clientTag> consists of the Vendor application Version Number).

Example: 'app:18-11-11_vendorName_12345'

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

3

For task-specific API calls, the Task ID should also be added to the clientTag .

Example, for a Task ID (9292) and vendor account id (12345), the resulting clientTag should be "app:18-11-
11_vendorName-12345-9292".

Service URLs - If you use a client library, make sure you specify the correct serviceUrl as per indications in the “Reach V2 -
Vendor Data privacy and Content deletion” documentation. For example when using the Python client library:

when creating a KalturaConfiguration , you can send in a serviceUrl : config = KalturaConfiguration()
config.serviceUrl = "https://www.kaltura.com/"
client = KalturaClient(config)

when not sending a serviceUrl, it will default to what is set in the KalturaConfiguration which is using HTTP:
KalturaGeneratedAPIClientsPython/KalturaClient/Base.py at dcac7d15f9654f4a2a81971d712d4ed04341f112 ·
kaltura/KalturaGeneratedAPIClientsPython

when not sending a serviceUrl, the client library will return a SERVICE_ACCESS_CONTROL_RESTRICTED error.

As good practice you should always set the serviceUrl, especially if you start supporting the various Kaltura SaaS regions
which have different domain names.

Working with the Kaltura REACH API

Listing REACH Vendor Tasks and their parameters

To execute API calls against Kaltura you need to first generate a valid KS (How to Create a Kaltura Session - Kaltura VPaaS API
Documentation). The KS is generated using your dedicated account details. Important note: the KS does not need to be
generated for each call. When generating the KS, you have the ability to generate it with a specific expiration time, the default
is 24 hours.

The KS needs to be generated with 'disableentitlement' privilege.

We strongly suggest provisioning an appToken for your vendor account and using that to spawn your API sessions. See
Application Tokens - Kaltura VPaaS API Documentation for more information on appToken sessions. Note that you do not
need to generate a new app token each time you generate a KS; you can use an app token to generate a KS as long as your
app token is valid.

Also, you can find pre-compiled Kaltura API client libraries in a number of languages to help you get started.

A vendor should list for pending jobs by sending the API entryVendorTask.getJobs - Kaltura VPaaS API Documentation and then
gathering details for the relevant jobs using entryVendorTask.get - Kaltura VPaaS API Documentation. The result will be a list of
entryVendorTask.

curl example to list pending jobs

Call entryVendorTask.getJobs - Kaltura VPaaS API Documentation to get a list of jobs that have been submitted by any
customer users for your specific vendor services.

curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/getJobs \curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/getJobs \
 -d "format=1" \ -d "format=1" \
 -d "ks=$KALTURA_SESSION" \ -d "ks=$KALTURA_SESSION" \

In this call you need to use the app token generated from your Vendor PID's admin secret.

This call will return a list of requested jobs for your Vendor account. By default the answer will only include tasks that
are PENDING processing by the vendor. It is not possible to change the filter.

The answer will return a list of jobs along with task IDs and access keys for each job. Make sure to store the task IDs
and access keys until you have retrieved the assets that need to be processed and submitted your deliverables.

Loop through the job objects in the response and get additional job details with entryVendorTask.get - Kaltura VPaaS API
Documentation; note that the vendor must add the responseProfile[systemName]=reach_vendor parameter to retrieve the
Reach profile information of the job. The REACH profile information contains information such as output format, metadata
extraction, content deletion policy, Speaker Change Indication and profanity removal indication (see the ENUMS list).

curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/get \curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/get \
 -d "format=1" \ -d "format=1" \
 -d "ks=$KALTURA_SESSION" \ -d "ks=$KALTURA_SESSION" \
 -d "id=$TASK_ID" -d "id=$TASK_ID"
 -d "responseProfile[systemName]=reach_vendor" -d "responseProfile[systemName]=reach_vendor"

For each task call, you should use the access key as a value for the KS parameter. The access key is retrieved in the prior
getJobs call.

https://knowledge.kaltura.com/help/reach-data-privacy-and-content-deletion
https://github.com/kaltura/KalturaGeneratedAPIClientsPython/blob/dcac7d15f9654f4a2a81971d712d4ed04341f112/KalturaClient/Base.py#L310
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/how-to-create-kaltura-session.html
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/getJobs
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/getJobs
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

4

For each task, the vendor should change its entryVendorTask[status] to “Processing” using entryVendorTask.updateJob - Kaltura
VPaaS API Documentation before beginning to handle the task.

After the vendor processing is done, the vendor needs to update the entryVendorTask[outputObjectId] with the ID of the object
that contains the output of the task.

If it is a captioning task, it will be the ID of the caption asset created using captionAsset.add - Kaltura VPaaS API
Documentation (the ID is returned in the response).

If for any reason the vendor can’t process the task, it should set the task status to Error and set the
entryVendorTask[errDescription] field (free text) with an informative message about why the task couldn't be processed.

The processing accuracy should be set on entryVendorTask[accuracy] .

If it is a captioning task, it also needs to be set on captionAsset[accuracy] when creating the caption using captionAsset.add -
Kaltura VPaaS API Documentation;

PHP example to list pending tasks and get the information for each one:

<?php<?php
// $client initialization should be done before this line// $client initialization should be done before this line
// the response profile will make sure to also return the catalog item for this service and the customer reach profile details.// the response profile will make sure to also return the catalog item for this service and the customer reach profile details.
$responseProfile = new KalturaResponseProfileHolder();$responseProfile = new KalturaResponseProfileHolder();
$responseProfile->systemName = 'reach_vendor';$responseProfile->systemName = 'reach_vendor';
$client->setResponseProfile($responseProfile);$client->setResponseProfile($responseProfile);
$reachPlugin = KalturaReachClientPlugin::get($client);$reachPlugin = KalturaReachClientPlugin::get($client);
$entryVendorTaskFilter = new KalturaEntryVendorTaskFilter();$entryVendorTaskFilter = new KalturaEntryVendorTaskFilter();
$entryVendorTaskFilter->createdAtGreaterThanOrEqual = time()-86400; // get all new jobs from last 24hrs$entryVendorTaskFilter->createdAtGreaterThanOrEqual = time()-86400; // get all new jobs from last 24hrs
$tasks = $reachPlugin->entryVendorTask->getJobs($entryVendorTaskFilter);$tasks = $reachPlugin->entryVendorTask->getJobs($entryVendorTaskFilter);

This will return a list of requested jobs for your Vendor account.

The object type ResponseProfile set with the systemName attribute value to 'reach_vendor' tells the API to return additional
information related to the Customer's Reach profile such as dictionaries, processing region, caption display settings, and other
pertinent details.

For each task, the vendor should change its status to “Processing” before starting to handle the task

After the vendor processing is done, the vendor needs to update the KalturaEntryVendorTask->outputObjectId with the ID of the
object that contains the output of the task.

If it is a captioning task, it would be the KalturaCaptionAsset->ID .

If for any reason the vendor can’t process the task, it should set the task status to Error and set the errDescription field (free
text) with an informative message about why the task couldn't be processed.

The processing accuracy should be set on KalturaEntryVendorTask->accuracy .

If it is a captioning task, it also needs to be set on KalturaCaptionAsset->accuracy ;

For call and response examples for retrieving jobs and tasks, please refer to the Appendix: Retrieving jobs and retrieving a specific
task | Kaltura Knowledge Center.

Example of a task object returned by Kaltura (in JSON format), including the Reach vendor profile information:

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://knowledge.kaltura.com/help/retrieving-jobs-and-retrieving-a-specific-task

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

5

{{
 "objects":["objects":[
 { {
 "id":"15", "id":"15",
 "partnerId":110, "partnerId":110,
 "vendorPartnerId":108, "vendorPartnerId":108,
 "createdAt":1521639688, "createdAt":1521639688,
 "entryId":"0_o2z3458w", "entryId":"0_o2z3458w",
 "status":1, "status":1,
 "reachProfileId":1, "reachProfileId":1,
 "catalogItemId":1, "catalogItemId":1,
 "accessKey":"OTNmNDE5Zjk2MDQxMTZkZWRhZjg1NTkzNTkxZDY5NDRjM2Y1ZmNlZnwxMTA7MTEwOzE1MjE3MjYwODg7MDsxNTIxNjM5Njg4LjQyMTM7O2VkaXQ6MF9vMnozNDU4dyxzZXRyb2xlOlJFQUNIX1ZFTkRPUl9ST0xFLGRpc2FibGVlbnRpdGxlbWVudGZvcmVudHJ5OjBfbzJ6MzQ1OHcsZW5hYmxlY2FwdGlvbm1vZGVyYXRpb247Ow==", "accessKey":"OTNmNDE5Zjk2MDQxMTZkZWRhZjg1NTkzNTkxZDY5NDRjM2Y1ZmNlZnwxMTA7MTEwOzE1MjE3MjYwODg7MDsxNTIxNjM5Njg4LjQyMTM7O2VkaXQ6MF9vMnozNDU4dyxzZXRyb2xlOlJFQUNIX1ZFTkRPUl9ST0xFLGRpc2FibGVlbnRpdGxlbWVudGZvcmVudHJ5OjBfbzJ6MzQ1OHcsZW5hYmxlY2FwdGlvbm1vZGVyYXRpb247Ow==",
 "notes":"notes test", "notes":"notes test",
 "dictionary":"Test Dictionary", "dictionary":"Test Dictionary",
 "relatedObjects":{ "relatedObjects":{
 "reach_vendor_catalog_item":{ "reach_vendor_catalog_item":{
 "objects":["objects":[
 { {
 "sourceLanguage":"Hebrew", "sourceLanguage":"Hebrew",
 "outputFormat":"1", "outputFormat":"1",
 "enableSpeakerId":true, "enableSpeakerId":true,
 "serviceType":1, "serviceType":1,
 "serviceFeature":1, "serviceFeature":1,
 "turnAroundTime":1800, "turnAroundTime":1800,
 "objectType":"KalturaVendorCaptionsCatalogItem" "objectType":"KalturaVendorCaptionsCatalogItem"
 } }
],],
 "totalCount":1, "totalCount":1,
 "objectType":"KalturaVendorCatalogItemListResponse" "objectType":"KalturaVendorCatalogItemListResponse"
 }, },
 "reach_vendor_profile":{ "reach_vendor_profile":{
 "objects":["objects":[
 { {
 "defaultSourceLanguage":"English", "defaultSourceLanguage":"English",
 "defaultOutputFormat":1, "defaultOutputFormat":1,
 "enableMachineModeration":false, "enableMachineModeration":false,
 "enableHumanModeration":false, "enableHumanModeration":false,
 "autoDisplayMachineCaptionsOnPlayer":false, "autoDisplayMachineCaptionsOnPlayer":false,
 "autoDisplayHumanCaptionsOnPlayer":false, "autoDisplayHumanCaptionsOnPlayer":false,
 "enableMetadataExtraction":true, "enableMetadataExtraction":true,
 "enableSpeakerChangeIndication":false, "enableSpeakerChangeIndication":false,
 "enableAudioTags":false, "enableAudioTags":false,
 "enableProfanityRemoval":true, "enableProfanityRemoval":true,
 "contentDeletionPolicy":1, "contentDeletionPolicy":1,
 "objectType":"KalturaReachProfile" "objectType":"KalturaReachProfile"
 } }
],],
 "totalCount":1, "totalCount":1,
 "objectType":"KalturaReachProfileListResponse" "objectType":"KalturaReachProfileListResponse"
 } }
 }, },
 "objectType":"KalturaEntryVendorTask" "objectType":"KalturaEntryVendorTask"
 } }
],],
 "totalCount":1, "totalCount":1,
 "objectType":"KalturaEntryVendorTaskListResponse" "objectType":"KalturaEntryVendorTaskListResponse"
}}

Extend accessKey Expiration

An access key validity depends on the catalog item's TaT (Turn Around Time): the value is calculated to be the max value between
7 days and twice the value set in the catalog item's TaT.

In the case that the vendor processing took longer than expected and the access key provided on the task expired, Kaltura offers a
way for the vendor to fetch a new access key.


Please note that the request for extending the access key is allowed only for tasks which are in processing state. Anything else
will result in an API exception.

To extend the access, you can do the following call: https://developer.kaltura.com/api-
docs/service/entryVendorTask/action/extendAccessKey

curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/extendAccessKey \curl -X POST https://www.kaltura.com/api_v3/service/reach_entryvendortask/action/extendAccessKey \
-d "ks=$KALTURA_SESSION" \-d "ks=$KALTURA_SESSION" \
-d "id=ENTRY_VENDOR_TASK_ID"-d "id=ENTRY_VENDOR_TASK_ID"

 The returned object should contain the extended access key on the returned.


The extendAccessKey action must be called with the Vendor KS. Generally, you can call it multiple times but that will not be
needed as each extension gives you twice the turn-around time defined on the catalog item.

How to download video assets from Kaltura

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/extendAccessKey

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

6

There are many ways one can download assets from Kaltura but we have decided to use specific ones when it comes to vendors
fetching content from Kaltura. We support various customer use cases and Reach should work for all of them (customers who work
with remote storage, encrypted content, regular Kaltura maintained content). Please follow these instructions when implementing
your content fetching mechanism.

If the account has basic configuration and the content is stored within Kaltura, we decided to utilize the fact that segmented HLS
can be quickly concatenated and repackaged as an mp4 file without consuming a lot of bandwidth and CPU. Some of the
capabilities offered by Reach may not require both the Video & Audio, and fetching segmented HLS via Kaltura’s packagers allows
for a simple way to download both video & audio streams or only the audio stream. This will offer all the flexibility needed for you
to select the streams you want to download and, in some cases, save unnecessary bandwidth consumption.

Please note that customers may define a desired flavorParamsId they wish external Vendor’s to fetch from Kaltura. This
flavorParamsId will be configured on the Reach profile object. If this attribute is defined, you should follow it strictly and download
from the entry’s available flavorAssets only the flavor asset matching the requested flavorParamsId. This field will be comma
separated and the order is important, so please make sure to match an asset based on the user defined order. For example, if I
defined flavorParamIds 1, 3, 5 and my entry has flavorAssets which where generated from flavorParamIds 2, 4, 5, then the
asset matching flavorParamsId 5 should be fetched. Or if I defined flavorParamIds 1, 3, 5 and my entry has flavorAssets which
where generated from flavorParamIds 1, 3, 7, then the asset matching flavorParamsId 1 should be fetched.

The flavorParamsIds returned in the Reach vendor profile is usually empty. Sometimes customers configure their client instance to
return a specific value to indicate a preferred flavor they want the Reach vendor to use for download and processing. One use-case
for example is a customer which has confidential videos where the video should not be viewed but they still want a captioning or
transcript. In such a case they could indicate a specific flavor id in the flavorParamsIds to point to an audio-only flavor for the
Reach vendor to download and process.

If the customer has not provided a preferred flavor, then the Reach vendor can simply choose to download the source flavor or
optionally can choose to download a compressed flavor for a faster and more efficient download.

How it should be achieved

STEP 1. Use Kaltura’s API to fetch the entry information you need.

curl -X POST https://www.kaltura.com/api_v3/service/baseentry/action/getPlaybackContext \curl -X POST https://www.kaltura.com/api_v3/service/baseentry/action/getPlaybackContext \
-d "ks=OWRhZTUyNTI3ZGQ4YjMzYWM3ZWJiY2RhYTAwODNmNzY2ZjY1ZWM1N3wxMTk7MTE5OzE1NDcxMDk2MDc7MjsxNTQ3MDIzMjA3LjYwMjQ7ZWxsYS5saWRpY2hAa2FsdHVyYS5jb207KixkaXNhYmxlZW50aXRsZW1lbnQ7Ow%3D%3D " \-d "ks=OWRhZTUyNTI3ZGQ4YjMzYWM3ZWJiY2RhYTAwODNmNzY2ZjY1ZWM1N3wxMTk7MTE5OzE1NDcxMDk2MDc7MjsxNTQ3MDIzMjA3LjYwMjQ7ZWxsYS5saWRpY2hAa2FsdHVyYS5jb207KixkaXNhYmxlZW50aXRsZW1lbnQ7Ow%3D%3D " \
-d "entryId=0_tpavjp5t" \-d "entryId=0_tpavjp5t" \
-d "contextDataParams[streamerType]=applehttp" \-d "contextDataParams[streamerType]=applehttp" \
-d "contextDataParams[ks]=OWRhZTUyNTI3ZGQ4YjMzYWM3ZWJiY2RhYTAwODNmNzY2ZjY1ZWM1N3wxMTk7MTE5OzE1NDcxMDk2MDc7MjsxNTQ3MDIzMjA3LjYwMjQ7ZWxsYS5saWRpY2hAa2FsdHVyYS5jb207KixkaXNhYmxlZW50aXRsZW1lbnQ7Ow%3D%3D" \-d "contextDataParams[ks]=OWRhZTUyNTI3ZGQ4YjMzYWM3ZWJiY2RhYTAwODNmNzY2ZjY1ZWM1N3wxMTk7MTE5OzE1NDcxMDk2MDc7MjsxNTQ3MDIzMjA3LjYwMjQ7ZWxsYS5saWRpY2hAa2FsdHVyYS5jb207KixkaXNhYmxlZW50aXRsZW1lbnQ7Ow%3D%3D" \
-d "contextDataParams[objectType]=KalturaPlaybackContextOptions"-d "contextDataParams[objectType]=KalturaPlaybackContextOptions"


Note the contextDataParams[streamerType]=applehttp indicates to use HLS.


Note the KS field is set with the access key.

The most important fields for you will be:

Sources: Contains the HLS .m3u8 Manifests URL’s required to generate the HLS manifest.

flavorAssets: Contains the entry’s flavorAssets that can be streamed via HLS protocol.

In the case that the account setup does not support HLS playback (i.e call #1 returns without any valid sources), issue the same
request with contextDataParams[streamerType]=http . This will return in the sources section a URL for fetching the MP4 file directly.

If the Reach profile is configured with specific flavorParamsIds, use the flavorAssets section to identify which flavor asset you
need to use. Each flavor asset will have an attribute called flavorParamsId which should be used for the match.

In any other case, use the asset information such as width, height, bitrate to select which flavor is the one you want to fetch.

STEP 2. From the sources section of the first call, take the url field value (should be a link to the playManifest API) and fetch its
content.

Don’t forget to concatenate the tasks accessKey (from the response to entryVendorTask.get - Kaltura VPaaS API Documentation) to
avoid any access restrictions to the entry, and make sure the "/flavorIds/" in the URL contain only the flavor ID you wish to fetch. It
should look like this:

https://cdnapisec.kaltura.com/p/$KALTURA_PARTNER_ID/sp/$KALTURA_PARTNER_ID00/playManifest/entryId/$KALTURA_ENTRY_ID/flavorIds/$KALTURA_HLS_FLAVOR_ID/format/applehttp/protocol/https/ks/$KALTURA_SESSION/name/a.m3u8
$KALTURA_HLS_FLAVOR_ID = FlavorId selected in step 2 $KALTURA_SESSION = accessKey from the entryVendorTask object.

OR in the case of direct file download over HTTP:

https://cdnapisec.kaltura.com/p/$KALTURA_PARTNER_ID/sp/$KALTURA_PARTNER_ID00/playManifest/entryId/$KALTURA_ENTRY_ID/flavorIds/$SELECTED_FLAVOR_ID/protocol/https/format/url/name/a.mp4

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

7

STEP 3. If HLS is supported, the response of the contextDataParams[streamerType]=applehttp playManifest request should be a valid
m3u8 manifest which contains a “serveFlavor” URL.

This “serveFlavor” URL points to the Kaltura packager or in the case of remote storage, should point to the customer's packager.

From the manifest, parse the segment URL and use FFmpeg to fetch the segments and repackage the file into a file you can work
with. This is an example command for concatenating the segments into an mp4 file:

ffmpeg -i "https://cdnapisec.kaltura.com/hls/p/$PARTNER_ID/sp/$PARTNER_ID00/serveFlavor/entryId/$ENTRY_ID/v/XXX/ev/XXX/flavorId/$FLAVOR_ASSET_ID/name/a.mp4/index.m3u8” -c copy -bsf:a aac_adtstoasc videoToProcess.mp4ffmpeg -i "https://cdnapisec.kaltura.com/hls/p/$PARTNER_ID/sp/$PARTNER_ID00/serveFlavor/entryId/$ENTRY_ID/v/XXX/ev/XXX/flavorId/$FLAVOR_ASSET_ID/name/a.mp4/index.m3u8” -c copy -bsf:a aac_adtstoasc videoToProcess.mp4

To select which stream you want to fetch (Video, Audio || Both), follow the documentation page https://github.com/kaltura/nginx-
vod-module#url-path-parameters.

In the case direct file download over HTTP is used to hit the playManifest URL directly to fetch the content, there is no need for
extra manipulations.


For examples of calls and responses for getPlaybackContext, please refer to the Appendix: Downloading assets from Kaltura -
Example of a response to getPlaybackContext | Kaltura Knowledge Center

Uploading vendor REACH Job results to Kaltura

Services input & output

The following table summarizes the assets that Reach vendors download from Kaltura for processing and the assets they upload to
Kaltura to fulfil Reach job orders from customers:

 Input (to Download
from Kaltura)

Output (to Upload
to Kaltura) Processing and Output Notes

Caption
Video/Audio

Caption file:
SRT/DFXP

Related files (ie.
transcripts): TXT,
DFXP

Captions

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=1 (for Captions), you can
then query the vendor catalog using vendorCatalogItem.get -
Kaltura VPaaS API Documentation to retrieve the
sourceLanguage .

Captions asset are added as CaptionAsset (set
captionAsset[accuracy]) using captionAsset.add - Kaltura

VPaaS API Documentation

Caption files (SRT/DXFP) are uploaded to Kaltura using
captionAsset.setContent - Kaltura VPaaS API Documentation

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the caption ID
created using captionAsset.add - Kaltura VPaaS API
Documentation

If metadata extraction is enabled on the profiles the vendor
needs to generate Tags.

Transcript

Transcript asset should be added as TranscriptAsset using
attachmentAsset.add - Kaltura VPaaS API Documentation

Transcript files (TXT and DFXP) are uploaded to Kaltura using
attachmentAsset.setContent - Kaltura VPaaS API
Documentation

https://github.com/kaltura/nginx-vod-module#url-path-parameters
https://knowledge.kaltura.com/help/getplaybackcontext-call-samples
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/captionAsset/action/setContent
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/setContent

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

8

Documentation

The TXT and DFXP ID returned after creating a transcript
using attachmentAsset.add - Kaltura VPaaS API
Documentation, should be added to the captions file using
captionAsset.update - Kaltura VPaaS API Documentation, this
ensures the transcript is associated with the captions and the
relevant related files.

Translation Video/Audio

Caption file:
SRT/DFXP

Related files (ie.
transcripts): TXT,
DFXP

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=2 (for Translations), you
can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve both the sourceLanguage and the targetLanguage .

In the case of translations, Kaltura supports both translations
from source captions file and translations from source audio:

1. For translations from source captions file ("requireSource": true or

when that parameter is not present), the vendor needs to retrieve the

captions file in the source language for generating the translation in

the target language. This is done using captionAsset.getUrl - Kaltura

VPaaS API Documentation.

2. For translations from source audio ("requireSource": false), the vendor

needs to retrieve the audio flavor. This is done using

baseEntry.getPlaybackContext - Kaltura VPaaS API Documentation

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the caption ID
created using captionAsset.add - Kaltura VPaaS API
Documentation

Dubbing Video Audio flavor

The vendor should extract the original audio and provide that
back as the native language track, then also add the relevant
dubbed language track.

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=7 (for dubbing), you can
then query the vendor catalog using vendorCatalogItem.get -
Kaltura VPaaS API Documentation to retrieve both the
sourceLanguage and the targetLanguage .

When processing the task and returning the dubbed audio
track, the vendor needs to add the original audio track as
well. This ensures the Kaltura Player will see multiple
language files to choose from and will function properly.

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the flavor asset
ID created using https://developer.kaltura.com/api-
docs/service/flavorAsset/action/add

Both audio flavors should be added using flavorAsset.add -
Kaltura VPaaS API Documentation.

The dubbed audio flavor should not be set to default.

The original audio / ‘clear audio’ should be set to default.

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=4 (for audio description),
you can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve further information.

 Input (to Download
from Kaltura)

Output (to Upload
to Kaltura) Processing and Output Notes

https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/captionAsset/action/update
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/captionAsset/action/getUrl
https://developer.kaltura.com/api-docs/service/baseEntry/action/getPlaybackContext
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/flavorAsset/action/add
https://developer.kaltura.com/api-docs/service/flavorAsset/action/add
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

9

Standard Audio
Description Video

Audio Description
flavor

Audio flavor of the
original language

Audio Description flavor - includes merged video audio
and audio description (the flavor param id is specify on the
catalog item)

Audio flavor of the original language - clear audio,
without the description (the flavor param id is specify on the
catalog item)

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the flavor asset
ID created using https://developer.kaltura.com/api-
docs/service/flavorAsset/action/add

Extended Audio
Description Video VTT file

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=9 (for extended audio
description), you can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve further information.

When processing the task and returning the VTT captions,

historically, the vendor needed to add the VTT file as
attachment with a “vtt” file extension using
attachmentAsset.add - Kaltura VPaaS API Documentation
and add an “AAD” tag. This ensured the Kaltura Player
plugin will read the VTT file as an Extended Audio
Descriptions source and leverage browser based voice
synthesis. This method is now deprecated.

currently, it is recommended that the vendor adds the VTT
file as a caption with a captionAsset[usage] attribute set
to 1, This ensures the Kaltura Player plugin will read the
VTT file as an Extended Audio Descriptions source and
leverage browser based voice synthesis. The vendor also
needs to set the captionAsset[displayOnPlayer] attribute to
false as it is not necessary to display EAD caption files as
part of captions. There are additional attributes to set and
those are documented in the relevant section of this
documentation.

The VTT file added for EAD should have the timestamps based
on the original video timestamps.

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the caption ID
created using captionAsset.add - Kaltura VPaaS API
Documentation

Chaptering Video Cue points - chapters

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=5 (for chaptering), you
can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve further information.

Chaptering assets are added as cuePoint using
cuePoint.add - Kaltura VPaaS API Documentation .

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the cuepoint ID
created using https://developer.kaltura.com/api-
docs/service/cuePoint/action/add

In the Reach job request, you should receive a catalogItemId

 Input (to Download
from Kaltura)

Output (to Upload
to Kaltura) Processing and Output Notes

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/flavorAsset/action/add
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/cuePoint/action/add/
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/cuePoint/action/add

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

10

Live caption Scheduled Event Caption URL and
Caption token

In the Reach job request, you should receive a catalogItemId
in the job details. If serviceFeature=8 (for Live caption), you
can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve further information.

For live, you should have a 'scheduleEventId' that comes in
the entryVendorTask details, along with the scheduled start
and end times for the live event. After provisioning your
services for the live session, you should call
scheduleEvent.updateLiveFeature() to provide the following
data back to Kaltura:

mediaUrl and mediaKey - an RTMP(S) stream ingest url
and key where Kaltura should relay the live stream to you.

captionUrl and captionToken - a websocket address and
token where Kaltura should connect at the scheduled
event time to receive caption data from you over a
realtime websocket.

The logic is the following:

1. User creates a captioning job on Reach

2. The vendor scans their Reach jobs periodically

3. When the vendor finds a new live captions job, they
should find a relevant scheduledEventId on the task object

4. The vendor calls an API and update the scheduled live
event with the RTMP and websocket details

5. When the live stream from customer starts, Kaltura
restreams it to the RTMP endpoint provided

6. When the scheduled time is due Kaltura connects to the
websocket

Sign language Video Video

In the REACH job request, you should receive a catalogItemId
in the job details. If serviceFeature=19 (for Sign Language), you
can then query the vendor catalog using
vendorCatalogItem.get - Kaltura VPaaS API Documentation to
retrieve further information.

The main steps to deliver the Sign language video to Kaltura
are:

1. Create draft Video (baseEntry.add / media.add).

2. Set the original video (step 1) as the ‘parentEntryId' of the
draft video (’child'; step 4).

3. Add admin tags with language (e.g., 'signLangASL’) and
vendor name.

4. Add the ‘child’ entry in the response under the
[outputObjectId] field.

The entryVendorTask[outputObjectId] set using

 Input (to Download
from Kaltura)

Output (to Upload
to Kaltura) Processing and Output Notes

https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get
https://developer.kaltura.com/api-docs/service/scheduleEvent/action/updateLiveFeature
https://dyzz9obi78pm5.cloudfront.net/app/image/id/65c2610aaf1bd133552f0852/n/1707237641803.png
https://developer.kaltura.com/api-docs/service/vendorCatalogItem/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

11

The entryVendorTask[outputObjectId] set using
entryVendorTask.updateJob - Kaltura VPaaS API
Documentation should be set with the value the entry ID of
the child entry created using
https://developer.kaltura.com/api-
docs/service/media/action/add or
https://developer.kaltura.com/api-
docs/service/baseEntry/action/add

 Input (to Download
from Kaltura)

Output (to Upload
to Kaltura) Processing and Output Notes

Reach job details that need to be taken into consideration when processing jobs:

Service type

Service Feature

Turn Around Time

Expected Finish Time

Notes

Reach profiles parameters that need to be taken into consideration when processing jobs:

Default Output Format (refer to the Appendix “Kaltura Enums Related to Reach API”)

Enable Metadata Extraction

Enable Audio Tags

Enable Profanity Removal

Content Deletion Policy (refer to the Appendix “Kaltura Enums Related to Reach API”)

Task Processing Region (refer to the Appendix “Kaltura Enums Related to Reach API”)

Max Characters Per Caption Line

Flavor Params Ids

Dictionary

REACH profiles parameters that do not need to be taken into consideration when processing jobs:

Enable Machine Moderation

Enable Human Moderation

Label Addition for Machine Service Type

Label Addition for Human Service Type

Flavor Asset Language - By default media which is uploaded has the flavorAsset.language set to undefined because there is no
way to know upon upload of the content, what is the language of the media: there is currently no analysis of the media to
determine what language it is, therefore the flavorAsset.language will be set to “undefined”. The flavorAssset.language is usually set
by Reach vendors when delivering dubbing orders: when adding a new flavorAsset, vendors also set the flavorAsset.language for
the dubbed soundtrack. We recommend to process undefined sources, especially in Production. When you process the jobs, you
need to consider the sourceLanguage as that is explicitly defined by the user who submits the Reach order.

Captions

To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each captioning task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a Reach job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and Reach profile information as

well.

If serviceFeature=1 (for Captions),

You can check the sourceLanguage .

You should check that the sourceLanguage actually matches the soundtrack of the video file submitted for processing,
if there is a mismatch the caption job should end in error

And of course check for the outputFormat value. If there is none then you can use SRT as default.

If serviceType=2 (for Machine),

You can choose to download an audio flavor for the purpose of the Machine based translation.

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/media/action/add
https://developer.kaltura.com/api-docs/service/baseEntry/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

12

You should check the dictionary value for words or phrases (delimited by a carriage return) to increase the quality of
the deliverable.

And you can check for the Speaker Identification, if enableSpeakerId=1 , vendor needs to add speaker IDs (ie. “[Speaker
1]”) to the caption lines.

And you can check for the Speaker Change Indication, if enableSpeakerChangeIndication=1 , vendor needs to add the “>>”
characters whenever a new speaker voice pattern is detected.

If serviceType=1 (for Human),

You can choose to download a video flavor (for example the source flavor or a compressed flavor) for the Human
translator

You should ensure the Human translator receives any “notes” sent by the user via the notes field in the job details.

You should check the dictionary value for words or phrases (delimited by a carriage return) to increase the quality of
the deliverable.

You should ensure the Human translator receives the expectedFinishTime and turnAroundTime information from the
job details.

And you can check for the Speaker Identification, if enableSpeakerId=1 , vendor needs to add speaker IDs (ie. “[Speaker
1]” or “[Interviewer]“) to the caption lines.

And you can check for the Speaker Change Indication, if enableSpeakerChangeIndication=1 , vendor needs to add the “>>”
characters whenever a new speaker voice pattern is detected.

If metadata extraction is enabled on the profiles enableMetadataExtraction=true , the vendor needs to generate Tags.

The vendor needs to analyze the generated captions/transcript to extract metadata.

Asset creation and upload

The caption asset is added as CaptionAsset (set captionAsset[accuracy]) using captionAsset.add - Kaltura VPaaS API
Documentation (retrieve the caption asset ID returned in the response).

Setting for the CaptionAsset:

captionAsset[format] should be set to the requested format.

captionAsset[fileExt] should be set to the relevant format.

captionAsset[accuracy] should be set to the relevant accuracy.

captionAsset[language] should be set to the caption language. The list of all languages which can be used is
documented on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you should use the values not the
key name.

captionAsset[isDefault] should be set to 1 as it is the source language.

captionAsset[displayOnPlayer] should be set to true

captionAsset[label] should be set with a value representing the language, for example you can take the same value as
for captionAsset[language]

The caption file (SRT/DXFP) is uploaded to Kaltura using captionAsset.setContent - Kaltura VPaaS API Documentation, the API
call offers various file transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

[OPTIONAL] The transcript asset should be added as TranscriptAsset using attachmentAsset.add - Kaltura VPaaS API
Documentation (retrieve the transcript asset ID returned in the response).

Setting for the TranscriptAsset:

https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage
https://developer.kaltura.com/api-docs/service/captionAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

13

captionAsset[format] should be set to the requested format.

captionAsset[fileExt] should be set to the relevant format.

captionAsset[accuracy] should be set to the relevant accuracy.

captionAsset[language] should be set to the translated language. The list of all languages which can be used is
documented on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you should use the values not the
key name.

captionAsset[isDefault] should be set to 0 as it is a translation.

[OPTIONAL] The transcript file (TXT and DFXP) is uploaded to Kaltura using attachmentAsset.setContent - Kaltura VPaaS API
Documentation, the API call offers various file transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

[OPTIONAL] After the transcript asset and file are created and uploaded, the vendor needs to update the
associatedTranscriptIds using captionAsset.update - Kaltura VPaaS API Documentation, with the TXT and DFXP ID returned

after creating a transcript using attachmentAsset.add - Kaltura VPaaS API Documentation, this ensures the transcript is
associated with the captions and the relevant related files.

In the case of translations, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the
task, which in this case is the value of the caption ID created using captionAsset.update - Kaltura VPaaS API
Documentation (the ID is returned in the response)

If metadata extraction is enabled on the profiles enableMetadataExtraction=true , the vendor needs to create Tags on the
entry:

The vendor needs to update the entry with a new tag using media.update - Kaltura VPaaS API Documentation or
baseEntry.update - Kaltura VPaaS API Documentation

If there are already existing tag entries, you first need to retrieve the existing tag entries using media.get - Kaltura VPaaS
API Documentation or baseEntry.get - Kaltura VPaaS API Documentation, then append the new tags to the existing tags
and then update the tag entries using media.update - Kaltura VPaaS API Documentation or baseEntry.update - Kaltura
VPaaS API Documentation

Supposing you do metadata extraction for Translations, you can then add or update tags using the
mediaEntry[multiLingual_tags] or baseEntry[multiLingual_tags] parameters depending on the call your are using. For

example if using media entries you can set French tags with the following parameters:

"mediaEntry[multiLingual_tags][0][language]=FR" "mediaEntry[multiLingual_tags][0][value]=francais" "mediaEntry[multiLingual_tags][0]
[objectType]=KalturaMultiLingualString"

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the task,
which in this case is the value of the caption ID created using captionAsset.add - Kaltura VPaaS API Documentation (the ID is
returned in the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using entryVendorTask.updateJob -
Kaltura VPaaS API Documentation

⚠
In case of any unsuccessful task, the vendor should change the entryVendorTask[status] to “Error” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation. When setting this status the errDescription field should always
be filled with a short description about the failure cause.

https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken
https://developer.kaltura.com/api-docs/service/captionAsset/action/update
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/update
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/media/action/get
https://developer.kaltura.com/api-docs/service/baseEntry/action/get
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

14


For examples of calls and responses for Captions and Translations, please refer to the Appendix: Adding captions | Kaltura
Knowledge Center

Translations

To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each translation task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and Reach profile information as

well.

If serviceFeature=2 (for Translations),

If requireSource=true or when that parameter is not present, the vendor needs to retrieve the captions file in the
source language for generating the translation in the target language. This is done using captionAsset.getUrl - Kaltura
VPaaS API Documentation.

You should check whether there is a caption file in the sourceLanguage specified. Most importantly, you need to
download the caption file of the source language to then generate the translation in the target language. To
retrieve the captions file in the source language you need to use captionAsset.getUrl - Kaltura VPaaS API
Documentation and pass the captionAssetId returned in the task

You should check the caption accuracy of the source and not translate it if the the captions are not at 100%
percent accuracy (representing Human caption) and send back an error message.

If requireSource=false , the vendor needs to retrieve the audio flavor. This is done using
baseEntry.getPlaybackContext - Kaltura VPaaS API Documentation.

If serviceType=2 (for Machine),

You can choose to download an audio flavor for the purpose of the Machine based translation.

If serviceType=1 (for Human),

You can choose to download a video flavor (for example the source flavor or a compressed flavor) for the
Human translator

Regardless of the value of requireSource :

You can check both the sourceLanguage and the targetLanguage .

And of course check for the outputFormat value. If there is none then you can use SRT as default

If serviceType=2 (for Machine),

You should check the dictionary value for words or phrases (delimited by a carriage return) to increase the quality of
the deliverable.

And you can check for the Speaker Identification, if enableSpeakerId=1 , vendor needs to add speaker IDs (ie.
“[Speaker 1]”) to the caption lines.

And you can check for the Speaker Change Indication, if >enableSpeakerChangeIndication=1 , vendor needs to add the
“>>” characters whenever a new speaker voice pattern is detected

If serviceType=1 (for Human),

You should ensure the Human translator receives any “notes” sent by the user via the notes field in the job details.

You should check the dictionary value for words or phrases (delimited by a carriage return) to increase the quality of
the deliverable.

And you can check for the Speaker Identification, if enableSpeakerId=1 , vendor needs to add speaker IDs (ie.
“[Speaker 1]” or “[Interviewer]“) to the caption lines.

And you can check for the Speaker Change Indication, if enableSpeakerChangeIndication=1 , vendor needs to add the

https://knowledge.kaltura.com/help/adding-captions-call-samples
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/captionAsset/action/getUrl
https://developer.kaltura.com/api-docs/service/captionAsset/action/getUrl
https://developer.kaltura.com/api-docs/service/baseEntry/action/getPlaybackContext

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

15

“>>” characters whenever a new speaker voice pattern is detected.

You should ensure the Human translator receives the expectedFinishTime and turnAroundTime information from the
job details.

If metadata extraction is enabled on the profiles enableMetadataExtraction=true , the vendor needs to generate Tags.

The vendor needs to analyze the generated captions/transcript to extract metadata.

Asset creation and upload

The caption asset is added as CaptionAsset (set captionAsset[accuracy]) using captionAsset.add - Kaltura VPaaS API
Documentation (retrieve the caption asset ID returned in the response).

Setting for the CaptionAsset:

captionAsset[format] should be set to the requested format.

captionAsset[fileExt] should be set to the relevant format.

captionAsset[accuracy] should be set to the relevant accuracy.

captionAsset[language] should be set to the caption language. The list of all languages which can be used is
documented on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you should use the values not the
key name.

captionAsset[isDefault] should be set to 0 as it is not the source language.

captionAsset[displayOnPlayer] should be set to true

captionAsset[label] should be set with a value representing the language, for example you can take the same value as
for captionAsset[language]

The caption file (SRT/DXFP) is uploaded to Kaltura using captionAsset.setContent - Kaltura VPaaS API Documentation, the API
call offers various file transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

[OPTIONAL] The transcript asset should be added as TranscriptAsset using attachmentAsset.add - Kaltura VPaaS API
Documentation (retrieve the transcript asset ID returned in the response).

Setting for the TranscriptAsset:

captionAsset[format] should be set to the requested format.

captionAsset[fileExt] should be set to the relevant format.

captionAsset[accuracy] should be set to the relevant accuracy.

captionAsset[language] should be set to the translated language. The list of all languages which can be used is
documented on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you should use the values not the
key name.

captionAsset[isDefault] should be set to 0 as it is a translation.

[OPTIONAL] The transcript file (TXT and DFXP) is uploaded to Kaltura using attachmentAsset.setContent - Kaltura VPaaS API
Documentation, the API call offers various file transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage
https://developer.kaltura.com/api-docs/service/captionAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

16

tokens to securely transfer data.

[OPTIONAL] After the transcript asset and file are created and uploaded, the vendor needs to update the
associatedTranscriptIds using captionAsset.update - Kaltura VPaaS API Documentation, with the TXT and DFXP ID returned

after creating a transcript using attachmentAsset.add - Kaltura VPaaS API Documentation, this ensures the transcript is
associated with the captions and the relevant related files.

In the case of translations, the vendor needs to add the caption asset ID of the source caption asset used to generate the
translation file in entryVendorTask[outputObjectId] of the job using entryVendorTask.updateJob - Kaltura VPaaS API
Documentation

If metadata extraction is enabled on the profiles enableMetadataExtraction=true , the vendor needs to create Tags on the
entry:

The vendor needs to update the entry with a new tag using media.update - Kaltura VPaaS API Documentation or
baseEntry.update - Kaltura VPaaS API Documentation

If there are already existing tag entries, you first need to retrieve the existing tag entries using media.get - Kaltura VPaaS
API Documentation or baseEntry.get - Kaltura VPaaS API Documentation, then append the new tags to the existing tags
and then update the tag entries using media.update - Kaltura VPaaS API Documentation or baseEntry.update - Kaltura
VPaaS API Documentation

Supposing you do metadata extraction for Translations, you can then add or update tags using the
mediaEntry[multiLingual_tags] or baseEntry[multiLingual_tags] parameters depending on the call your are using. For

example if using media entries you can set French tags with the following parameters:

"mediaEntry[multiLingual_tags][0][language]=FR" "mediaEntry[multiLingual_tags][0][value]=francais" "mediaEntry[multiLingual_tags][0]
[objectType]=KalturaMultiLingualString"

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the task,
which in this case is the value of the caption ID created using captionAsset.add - Kaltura VPaaS API Documentation (the ID is
returned in the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using entryVendorTask.updateJob -
Kaltura VPaaS API Documentation

⚠
In case of any unsuccessful task, the vendor should change the entryVendorTask[status] to “Error” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation. When setting this status the errDescription field should always
be filled with a short description about the failure cause.


For examples of calls and responses for Translations, please refer to the Appendix: Adding translations | Kaltura Knowledge
Center

Audio Tracks for dubbing and standard audio description

To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each captioning task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and REACH profile information as

well.

If serviceFeature=7 (for dubbing),

You can then check both the sourceLanguage and the targetLanguage .

You probably should choose to download a video flavor (for example the source flavor or a compressed flavor) for the
Human translator to ensure good timing of the produced dubbing audio track, but the vendor could optionally choose
to download an audio flavor.

https://developer.kaltura.com/api-docs/service/captionAsset/action/update
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/media/action/get
https://developer.kaltura.com/api-docs/service/baseEntry/action/get
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://knowledge.kaltura.com/help/adding-translations-call-samples
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

17

Make sure you retrieve the values of both flavorParamsId and clearAudioFlavorParamsId in the REACH vendor catalog
item object, those indicate the audio flavors to use for both audio tracks the Vendor will produce and upload to
Kaltura (flavorParamsId will be to be used for the dubbed track and clearAudioFlavorParamsId will be to be used for the
source track).

If serviceFeature=4 (for audio description), you can then check the sourceLanguage .

You must choose to download a video flavor (for example the source flavor or a compressed flavor) for the Human
translator.

Make sure you retrieve the values of both flavorParamsId and clearAudioFlavorParamsId in the REACH vendor catalog
item object, those indicate the audio flavors to use for both audio tracks the Vendor will produce and upload to
Kaltura (flavorParamsId will be to be used for the dubbed track and clearAudioFlavorParamsId will be to be used for the
source track).

You should ensure the Human translator receives the information from the job details in order to ensure he uses the
natural pauses of the video to add audio descriptions.

Because serviceType=1 (for Human),

You should ensure the Human translator receives the expectedFinishTime and turnAroundTime information from the
job details.

Asset creation and upload

When processing the task and returning the dubbed audio track or the audio description track, the vendor needs to add the
original audio track as well. This ensures the Kaltura Player will see multiple language files to choose from and will function
properly.

The generated audio tracks need to be MP4 and should use AAC-LC Codec with 64Kbps or 128Kbps bitrate.

Both in case of dubbing and standard audio description, both audio flavor assets should be added using flavorAsset.add -
Kaltura VPaaS API Documentation (retrieve the flavor asset ID returned in the response).

Setting for the dubbed audio flavor or the audio description track:

flavorAsset[isDefault] should be set to 0 as it is not the source language

flavorAsset[language] should be set to the dubbed language or the audio description language. The list of all
languages which can be used is documented on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you
should use the values not the key name.

flavorAsset[isOriginal] should be set to 0 as it is not the source language

flavorAsset[fileExt] should be set to the relevant format

For dubbed audio flavor (only):

The flavorParamsId should be set to the value of the flavorParamsId parameter retrieved in the REACH vendor
catalog item object of the job (entryVendorTask.get - Kaltura VPaaS API Documentation)

The flavorAsset[label] should be set with a value representing the language, for example you can take the same
value as for flavorAsset[language] i.e. “English”

For audio description:

The flavorParamsId should be set to the value of the flavorParamsId parameter retrieved in the REACH vendor
catalog item object of the job (entryVendorTask.get - Kaltura VPaaS API Documentation), for example the value
“200” when integrating with the Kaltura US SaaS region. This will ensure that the
“audio_only,alt_audio,audio_description” tags are added to the flavorAsset[tags] parameter.

The flavorAsset[label] should be set with a value representing the language with an “Audio description” suffix, for
example you can take the same value as for flavorAsset[language] i.e. “English” and add “ - Audio description”
(note the leading space).

Setting for the original audio flavor:

flavorAsset[isDefault] should be set to 1 as it is the source language

flavorAsset[language] should be set to the source language. The list of all languages which can be used is documented
on KalturaCatalogItemLanguage - Kaltura VPaaS API Documentation, you should use the values not the key name.

https://developer.kaltura.com/api-docs/service/flavorAsset/action/add
https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/General_Objects/Enums/KalturaCatalogItemLanguage

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

18

flavorAsset[isOriginal] should be set to 1 as it is the source language

The flavorParamsId should be set to the value of the clearAudioFlavorParamsId parameter retrieved in the REACH
vendor catalog item object of the job (entryVendorTask.get - Kaltura VPaaS API Documentation)

flavorAsset[fileExt] should be set to the relevant format

Both audio flavor files should be uploaded using flavorAsset.setContent - Kaltura VPaaS API Documentation, the API call
offers various file transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

Some customers like to have a caption file which is aligned with the new spoken audio (dub). It is possible to also upload a
caption file but it is important that it is set with the appropriate attributes:

be set with a proper “accuracy” value which naturally will be lower than 99%

be set with a clear label, for example “Japanese (Dub translation)”

language be set, for example “Japanese”

display on player be set to TRUE

default be set to FALSE

The above will ensure that if there are multiple translated captions for one same language, they can be easily identified
by the end-user.

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the task,
which in this case is the value of the audio flavor ID created using flavorAsset.add - Kaltura VPaaS API Documentation (the ID
is returned in the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using entryVendorTask.updateJob -
Kaltura VPaaS API Documentation

In case of any unsuccessful task, the vendor should change the entryVendorTask[status] to “Error” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation. When setting this status the errDescription field should always
be filled with a short description about the failure cause.


For examples of calls and responses for Audio tracks, please refer to the Appendix: Adding audio flavors for dubbing and
standard audio descriptions | Kaltura Knowledge Center

Extended audio description

To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each extended audio description task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and REACH profile information as

well.

With serviceFeature=9 (for extended audio description), you can then check the sourceLanguage and the outputFormat .

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/flavorAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/flavorAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://knowledge.kaltura.com/help/adding-audio-flavors-call-samples
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

19

You should ensure the Human translator receives the information from the job details in order to ensure he uses adds
time codes for his audio descriptions and delivers a VTT captions file.

Because serviceType=1 (for Human),

You should ensure the Human translator receives the expectedFinishTime and turnAroundTime information from the
job details.

Asset creation

When processing the task and returning the VTT captions, the vendor needs to create a VTT file where the timestamps are
based on the original video timestamps. The Kaltura player takes into account both the start and the end timestamp in the
EAD VTT in the following way: if the user skips (forward/backward) to a position that is between the start and end
timestamp, the EAD text will be read out loud by the player; the Reach vendor should ensure to indicate both the start and
end timestamps based on when the event on the screen start and ends.

For example: if the video contains a “woman with yellow shirt sitting on a couch” between 00:05 and 00:10, the beginning
timestamp in the VTT should be 00:05 and the end timestamp should be 00:10.

Asset upload (historical / deprecated method):

add the VTT file as an attachmentAsset , the attachment is added using attachmentAsset.add - Kaltura VPaaS API
Documentation and add the following information:

"attachmentAsset[tags]=AAD" to ensure the Player will read this file using speech synthesis

"attachmentAsset[fileExt]=vtt"

"attachmentAsset[title]" to set a Human readable name which will be displayed in the Player, for example “Extended
Audio Description”

upload the VTT file using attachmentAsset.setContent - Kaltura VPaaS API Documentation, the API call offers various file
transfer methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

Asset upload (current / recommended method):

add the VTT file as a captionAsset , the caption is added using captionAsset.add - Kaltura VPaaS API Documentation and the
add the following information:

"captionAsset[label]=English%20Extended%20Audio%20Description" although this won’t be displayed to the end-user,
especially if captionAsset[displayOnPlayer]=false is set, it is recommended to add a descriptive label such as “Language +
Extended Audio Description”

"captionAsset[language]=English" allows distinguishing different EAD files in different languages

"captionAsset[isDefault]=0" to ensure the EAD is not read by default by the Kaltura Player

"captionAsset[displayOnPlayer]=false" to ensure the EAD is not displayed as part of the normal caption files in the Kaltura
player

"captionAsset[format]=3" to explicitly indicate the file format as VTT

"captionAsset[objectType]=KalturaCaptionAsset" to indicate the file is a caption file

"captionAsset[usage]=1" to explicitly indicate to the Kaltura player to treat and display the contents of the VTT file as
Extended Audio Descriptions

upload the VTT file using captionAsset.setContent - Kaltura VPaaS API Documentation, the API call offers various file transfer
methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken
authentication and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

https://developer.kaltura.com/api-docs/service/attachmentAsset/action/add
https://developer.kaltura.com/api-docs/service/attachmentAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/captionAsset/action/setContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

20

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable.

You can set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication

tokens to securely transfer data.

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the task,
which in this case is the value of the cap ID created using captionAsset.add - Kaltura VPaaS API Documentation (the ID is
returned in the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using entryVendorTask.updateJob
- Kaltura VPaaS API Documentation


In case of any unsuccessful task, the vendor should change the entryVendorTask[status] to “Error” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation. When setting this status the errDescription field should always
be filled with a short description about the failure cause.


For examples of calls and responses for Extended Audio Descriptions, please refer to the Appendix: Adding extended audio
descriptions | Kaltura Knowledge Center

Chaptering
To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each chaptering task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and REACH profile information

as well.

With serviceFeature=5 (for chaptering), you can then check the sourceLanguage .

If serviceType=1 (for Human),

You should ensure the Human translator receives the expectedFinishTime and turnAroundTime information from
the job details.

Asset creation and upload

When processing the task and returning the cuepoints, the vendor needs to create cuepoints. There are two options:

1. Create cuepoints one by one using cuePoint.add - Kaltura VPaaS API Documentation , in such case the vendor can
build a reusable error handling logic to be used for each call

2. Bulk create cuepoints using cuePoint.addFromBulk - Kaltura VPaaS API Documentation , in such case the vendor
needs to process the error of the bulk operation and proceed depending on the error details

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the
task, which in this case is the value of the audio flavor ID created using cuePoint.add - Kaltura VPaaS API Documentation
(the ID is returned in the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/captionAsset/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://knowledge.kaltura.com/help/adding-extended-audio-descriptions-call-samples
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/cuePoint/action/add/
https://developer.kaltura.com/api-docs/service/cuePoint/action/addFromBulk
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/cuePoint/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

21

Live captions
Pre requisites

A user creates a new entryVendorTask (assuming the task was created before the minimal order time) that includes these
fields in the task data:

Start/End time – when they want the live captioning. Epoch time that is checked against the durationLimit.

scheduledEventId- id of the related scheduled event object. The object represents a planned live stream (Such as a town
hall meeting, lecture, class, etc.

To execute API calls against Kaltura you need to first generate a valid KS.

Retrieving tasks

The vendor should uses entryVendorTask.getJobs - Kaltura VPaaS API Documentation action to list pending jobs

The vendor should uses entryVendorTask.get - Kaltura VPaaS API Documentation action to list pending tasks

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and REACH profile information as

well.

With serviceFeature=8 (for Live caption), you can then check the sourceLanguage .

If serviceType=1 (for Human),

You should ensure the Human translator receives the scheduled startDate and endDate information from the job
details.

Pre-processing

The vendor updates the Kaltura scheduled event so that Kaltura can send you the stream data, and retrieve the needed
caption data

The vendor adds the relevant data using the scheduleEvent.updateLiveFeature - Kaltura VPaaS API Documentation action
with the following fields :

scheduleEventId : this is the scheduleEventId that you should have received in the entryVendorTask request

featureName : for live captions, the featureName string should follow the format LiveCaptionFeature-reach-<taskID>
where is the id of the entryVendorTask you are fulfilling

liveFeature : use the “KalturaLiveCaptionFeature” object with the following fields:

mediaKey : this is the stream key/name for the RTMP(S) stream where we will send you a relay of the media stream

mediaUrl : this is the RTMP(S) stream URL (Vendor hosted) where we will send you a relay of the media stream

captionToken : this should be a security token used when accessing the websocket that you will be outputting the
caption data stream to

captionUrl : this is the url (Vendor hosted) of the websocket that you will be outputting the caption data stream to

The vendor updates the entryVendorTask[status] to SCHEDULED using entryVendorTask.updateJob - Kaltura VPaaS API
Documentation to ensure the customer is aware that the vendor is ready

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

The entryVendorTask remains in the SCHEDULED status until the start of the event. The client can still abort the task in this
state and the task status will change to ABORTED (the client will only receive a refund if they do so before the
minimalRefundTime that is configured on the catalog item).

Processing (At the time of the live session)

Once the event starts and the vendor starts receiving content and sending captions they need to update the
entryVendorTask status to PROCESSING.

For each live caption task, the vendor should change the entryVendorTask[status] to PROCESSING using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

Kaltura will relay the media stream to your provided mediaUrl/mediaKey for you to process the stream and output the

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/getJobs
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/scheduleEvent/action/updateLiveFeature
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

22

caption feed back on the captionUrl/captionToken websocket that you provide.

When live streaming begin, Kaltura connects to the vendor’s websocket by the URL given to us by the vendor over the
liveFeature . Authentication of the websocket can happen in 2 layers (up to the vendor) :

1. First we authenticate by pre-given token set in the general Kaltura secret with the vendor (regardless of this specific
event). The auth URL for this step is also given by the vendor

2. The second layer is per-stream authentication. The vendor can set the per-session token on the live feature and define
the way to use that (will be implement in the specific vendor adaptor) or can add the auth data over the caption
WebSocket URL provided.

Asset generation (During the Live session)

The vendor provides captions text over the WebSocket in the defined format (please refer to examples in Appendix)

Kaltura will handle ingesting the caption data and transforming to WebVTT format to inject into the player along with the
HLS stream that viewers will consume.

Post processing (Live session ended)

Once the event ends and the content input is disconnected, the vendor should change the entryVendorTask[status] to
“Ready” using entryVendorTask.updateJob - Kaltura VPaaS API Documentation

⚠
Currently if the customer starts streaming before the REACH vendor adds the details for the task, they will not receive captions
for their stream at all. For examples of calls and responses for Live captions, please refer to the Appendix: Adding Live captions
| Kaltura Knowledge Cente

Sign language

To execute API calls against Kaltura you need to first generate a valid KS.

Processing

For each sign language task, the vendor should change the entryVendorTask[status] to “Processing” using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation before starting handling the task

With a REACH job request (entryVendorTask.get - Kaltura VPaaS API Documentation) that specifies the
responseProfile[systemName]=reach_vendor in the query, you will receive the catalog details and REACH profile information as well.

With serviceFeature=19 (for sign language), you can then check both sourceLanguage and targetLanguage .

Asset creation and upload

When processing the task and returning the Sign Language video, the vendor needs to create a child entry:

1. create a a draft/template video using https://developer.kaltura.com/api-docs/service/media/action/add or
https://developer.kaltura.com/api-docs/service/baseEntry/action/add using the following Name convention:

Parent: ‘NAME’

Child: ‘NAME child + signLang[language]’ where [language] is ASL or BSL

curl -X POST https://www.kaltura.com/api_v3/service/media/action/add \
 -d "ks=$KALTURA_SESSION" \
 -d "entry[objectType]=KalturaMediaEntry" \
 -d "entry[name]=MyVideo child signLangASL"

2. upload the video file using https://developer.kaltura.com/api-docs/service/media/action/addContent or
https://developer.kaltura.com/api-docs/service/baseEntry/action/addContent , the API call offers various file transfer
methods, we recommend to use one of the following methods:

use contentResource[objectType]=KalturaAssetResource to point to an asset you would upload using an appToken authentication
and uploading the produced file to Kaltura using the chunked upload method and an uploadToken.

use contentResource[objectType]=KalturaUrlResource and provide a link to the vendor’s deliverable with
contentResource[url]=http://www.vendor.com/deliverable_to_upload to instruct Kaltura to download the vendor’s deliverable. You can

set contentResource[forceAsyncDownload]=false to execute the download immediately. Make sure you use
contentResource[urlHeaders][0][value] and contentResource[urlHeaders][0][objectType]=KalturaString to pass authentication tokens to

securely transfer data.

https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://knowledge.kaltura.com/help/adding-live-captions-call-samples
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/get
https://developer.kaltura.com/api-docs/service/media/action/add
https://developer.kaltura.com/api-docs/service/baseEntry/action/add
https://developer.kaltura.com/api-docs/service/media/action/addContent
https://developer.kaltura.com/api-docs/service/baseEntry/action/addContent
https://developer.kaltura.com/api-docs/VPaaS-API-Getting-Started/application-tokens.html
https://developer.kaltura.com/workflows/Ingest_and_Upload_Media/Uploading_Media_Files
https://developer.kaltura.com/api-docs/service/uploadToken

Copyright ©️ 2025 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

23

3. Set the “Child” entry (Sign language video) and bind it to the “Parent” entry using https://developer.kaltura.com/api-
docs/service/media/action/update or https://developer.kaltura.com/api-docs/service/baseEntry/action/update and the
following attributes:

curl -X POST https://www.kaltura.com/api_v3/service/media/action/update \
 -d "ks=$KALTURA_SESSION" \
 -d "entryId=childentry" \
 -d "mediaEntry[objectType]=KalturaMediaEntry" \
 -d "mediaEntry[parentEntryId]=parententry"
 -d "mediaEntry[adminTags]=signLangASL"

4. Add admin tags with language (see example above),

a. The vendor needs to use the following Name convention: signLang[language] - e.g. signLangASL

b. The vendor needs to update the entry with new admin tags using media.update - Kaltura VPaaS API Documentation or
baseEntry.update - Kaltura VPaaS API Documentation

a. it is mandatory to add a ‘signLang[language]’ tag where [language] is ASL or BSL

b. and we recommend adding a “vendorname” tag where vendorname is representing the vendor name

c. If there are already existing tag entries, you first need to retrieve the existing tag entries using media.get - Kaltura
VPaaS API Documentation or baseEntry.get - Kaltura VPaaS API Documentation, then append the new tags to the
existing tags and then update the tag entries using media.update - Kaltura VPaaS API Documentation or
baseEntry.update - Kaltura VPaaS API Documentation

Post processing

After the vendor processing is done for the task, the vendor needs to update the entryVendorTask[outputObjectId] using
entryVendorTask.updateJob - Kaltura VPaaS API Documentation with the ID of the asset that contains the output of the task,
which in this case is the value of the entry ID of the child entry created using https://developer.kaltura.com/api-
docs/service/media/action/add or https://developer.kaltura.com/api-docs/service/baseEntry/action/add (the ID is returned in
the response)

[RECOMMENDED] The vendor may also put their task id in the externalTaskId field of the task

After a successful task, the vendor should change the entryVendorTask[status] to “Ready” using entryVendorTask.updateJob -
Kaltura VPaaS API Documentation

Job prioritization

The vendor should have a queueing mechanism that gives equal priority to all jobs, regardless of the customer that initiated the
request.

https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/media/action/get
https://developer.kaltura.com/api-docs/service/baseEntry/action/get
https://developer.kaltura.com/api-docs/service/media/action/update
https://developer.kaltura.com/api-docs/service/baseEntry/action/update
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob
https://developer.kaltura.com/api-docs/service/media/action/add
https://developer.kaltura.com/api-docs/service/baseEntry/action/add
https://developer.kaltura.com/api-docs/service/entryVendorTask/action/updateJob

