
Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

1

Kaltura Online Video Security Capabilities

Overview of Security Capabilities

Kaltura’s online video platform offers advanced video publishing, management, syndication and monetization solutions
suitable for many verticals, including education, enterprise, government, media and entertainment, advertising, and many
others. Kaltura’s flexible platform and APIs allow publishers and organizations to rapidly, and cost-effectively, build video
applications, widgets and plug-ins, as well as add core video services to their existing offerings.

Whether you publish video on the web or use it only for internal audiences, it is important for you to address the security
aspects of your online video strategy. Kaltura offers various effective ways to implement the right level of security for your
needs and has built in physical, architectural and applicative security measures that provide end-to-end protection for your
assets and information.

Whether you choose a Software as a Service (SaaS) implementation using our scalable infrastructure and trusted CDN partner,
or opt for a self-hosted and self-operated platform on your own premises (Kaltura On-Prem™), Kaltura will help you implement
the security measures you need to have in place, while assuring an intuitive and smooth experience for your end users.

This guide provides an overview of the security capabilities that Kaltura offers and includes a high level description of the
Kaltura security capabilities for video based content – including ingestion, storage and delivery. The methods that Kaltura uses
to protect user information are described, in addition to Kaltura’s business continuity and disaster recovery policies, Kaltura’s
secure platform architecture, and the physical security Kaltura maintains in its hosting facilities. If you require a more in depth
description of Kaltura’s security capabilities, please contact a Kaltura representative.

The options can be used as standalone capabilities – or used together to provide a full security package.

Kaltura Access Control

In many cases, organizations are interested in restricting access to content. You may want or need to employ broad controls
such as allowing access only from a specific geographic location, domains, or you may want to restrict access to specific assets
to certain authorized individuals only.

Kaltura offers several features that are designed to help you achieve the right level of access control to your media.

The options are summarized in the following table:

Feature Description When to use it?How to apply it?

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

2

Authentication
on entry to
the web page

Restricts access to
the web page in
which the media is
hosted. Only
authorized users will
be able to access the
web page using a
password or any other
secret.

In case access
needs to be
granted to
specific people.

For Kaltura’s Video
Portal, MediaSpace,
Kaltura offers multiple
authorization options –
manage users through
our system or integrate
with external
authorization systems
(LDAP, Shibboleth, CAS)
as well as custom
databases for single
sign-on (SSO), or use a
hybrid approach where
authentication is done
by your organization and
authorization is handled
by Kaltura.

For more information
about the MediaSpace
permissions, refer to the
article Kaltura
Entitlement
Infrastructure.

For integrations with
LMSs (Learning
Management Systems)
and CMSs (Content
Management Systems),
Kaltura operates within
the context of the LMS
or CMS. The
authentication method
used in the organization
for access to the LMS or
CMS is in effect and the
media file can only be
viewed by those with
access permissions to
the page that hosts it
per the LMS/CMS
 configuration.

If the video is embedded
in the customer’s
website, password
protection needs to be
set up by the customer.
on their web page.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

3

Geo
Restriction

Restricts access to
media based on the
viewer’s IP address
geo location. This is
set using the browser
IP address received
within the HTTP
requests and the use
of IP to location
lookup services. For
example, a Spanish
client can deny access
to their media to all
users outside of
Spain, allowing users
with Spanish IPs only
to access the site’s
media.

Geo restriction is
a good way to
help enforce
licensing
agreements,
which often limit
viewership to a
list of approved
countries.

Geo restriction can be
applied using the Kaltura
Management Console
(KMC) on each entry or
in bulk. For more
information about
creation of access
profiles via the KMC,
refer to the article How
to create an access
profile.

Authorized
domains

Restricts access to
media based on a
predefined list of
approved domains.

Domain
restriction is
useful, for
example, in case
you want to
make sure
content can only
be viewed from
within your
domains. For
example – an
internal training
video can only be
viewed from
within the
enterprise
domain, or a
course video can
only be viewed
from within the
university
domain.

Domain restriction can
be applied using the
Kaltura Management
Console (KMC) on each
entry or in bulk. For
more information about
creation of access
profiles via the KMC
refer to the article How
to create an access
profile.

Authorized IP
addresses

Restricts access to
media based on a
predefined list of
approved IP
addresses

In case domain
authorization is
not granular
enough (for
example if there
is a large
organization
comprising
several networks
serving different
divisions, and
there is a desire
to limit access to
a specific division
only).

IP address restriction can
be applied using the
Kaltura Management
Console (KMC) on each
entry or in bulk. For
more information about
creation of access
profiles via the KMC,
refer to the article How
to create an access
profile.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

4

Make your
content
playable only
within your
Kaltura
account and
by your player

Restrict content
playback to Kaltura
players from your
account only

To prevent video
theft, this feature
also enhances
brand awareness
by showing your
videos only on
your branded
player.

This setting can be
turned on from within
the Kaltura Management
Console (KMC). If you
already have content
that was not secured
this way, Kaltura support
can assist in applying
this security measure to
existing entries as well.

Make your
content
available only
in specific
time windows

Configure a schedule
for media entries,
defining a start and
end date.

Playback will be
allowed only within
the defined schedule.

When you want
to limit the time
in which a media
entry is available
for viewing.

Scheduling can be
applied using the Kaltura
Management Console
(KMC) on each entry or
in bulk. For more
information about
scheduling, refer to the
article More Actions
Menu.

Kaltura
Session
Authentication
for embed
codes

Any published embed
code of media
requires a valid
Kaltura Session to be
passed to the embed
code before the
content is played. A
Kaltura Session has a
time expiration.

If you would like
to restrict embed
codes to play in
authorized
applications only.

Kaltura Session
authentication for
embed codes can be
applied using the Kaltura
Management Console
(KMC) on each entry or
in bulk. For more
information about
creation of access
profiles via the KMC,
refer to the article How
to create an access
profile.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

5

URL

tokenization

URL tokenization is a
content protection
offered at the CDN
level. The token
includes a TTL (time-
to-live), so that if an
end user tampers
with the URL, their
request for CDN
content is denied. If a
URL has an expired
TTL, end-user
requests for CDN
content are denied.

All the access
control solutions
described in this
table are
enforced on the
Kaltura Player
level. If a
sophisticated
user spoofs the
content URL,
these solutions
will not be
effective. URL
tokenization
helps prevent
attempts to play
the content
outside of the
Kaltura player. It
is best to
combine this
feature with one
of the other
described access
control features

URL tokenization is
enabled on the CDN
level, Kaltura’s support
team is available to set
this up on your behalf.

Note: This form of protection does not encrypt the content itself, but only restricts access to the content – according to the
specifications listed.

Protecting Content in Transit

Some organizations are concerned about the security of their media as it is being streamed. Content can be hijacked using
man-in-the-middle attacks or other stream capture methods, and then the content can be stored locally or published illegally.

To protect your content in transit, you can use a secured streaming protocol. You can configure the CDN to stream over an
encrypted protocol (HTTPS/RTPME) to prevent exposure of the content in transit. The Kaltura platform allows you to easily
implement secured streaming.

AES Encryption

To support content protection on delivery, Kaltura supports AES standard encryption of content delivery for HLS delivery.
Content is encrypted on the fly utilizing the Kaltura on the fly packager, and the Kaltura player can access the decryption key
on the Kaltura servers to decrypt content as it is being played back.

Encryption at Rest

To support secure storage of content on the Kaltura servers, Kaltura employs encryption at rest of content. Encryption is on a
per rendition level, with the encryption done as part of the transcoding process. Content is securely transitioned and stored
thought the whole ingest/transcoding process.

Encryption at rest is especially beneficial for customers utilizing the Kaltura uDRM module. Since Kaltura utilizes on the fly
packaging and encryption for DRM content, customers can enjoy the benefits of storing only the original content renditions –
without the need of storing pre encrypted DRM flavors, and still make sure content is stored securely utilizing encryption at
rest.

See Digital Rights Management for more information.

Digital Rights Management

DRM offers another layer of content protection, by adding a license policy to the content encryption.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

6

By adding a license, content owners can make sure that only authorized users can have access to decryption keys – and can
tie their content to their business modules and protection policies.

The Kaltura uDRM module is fully integrated with Kaltura business modules definitions, making it possible for content owners to
define complex business scenarios – supporting AVOD, TVOD and SVOD configurations.

Kaltura offers a full multi DRM solution – supporting all major DRM schemas including

Microsoft PlayReady
Google Widevine
Apple Fairplay

By supporting all DRM schemas – content owners can ensure their content is fully DRM protected across all devices, browsers
and OS, as Kaltura delivers the most natively supported and security enhanced schema on playback – utilizing the Kaltura on
the fly packager. This also ensures a minimal storage foot-print, by enabling the content owners to store only the original
transcoded renditions – instead of pre encrypted renditions for all DRM schemas.

DRM protection is usually required when using premium content on a monetized service and is usually a content owner/studio
requirement.

The Kaltura uDRM module is integrated with the Kaltura player and the Kaltura on the fly packager, to offer a complete, easy to
setup DRM eco system. In addition, since the uDRM module is API-driven – it is easily integrated with external video head ends
and players is needed.

Supported Desktop Browsers for DRM

Browser Delivery Format DRM

IE < 11 Smooth Stream PlayReady

IE >= 11,
Edge

Dash PlayReady

Chrome Dash Widevine

Safari HLS Fairplay

Firefox Smooth Stream

Dash

PlayReady

Widevine

Mobile Device Support for DRM

Mobile Device/OS Delivery
Format

DRM

Android 4.1 WVM Widevine Classic

Android >= 4.2 Dash Widevine Modular

iOS HLS Fairplay

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

7

Connected Devices Support for DRM

Note: * marks devices that are not supported by Kaltura player SDK and DRM plugin. Support is in the form of uDRM licensing
API with integration to external players.

Device Delivery TypeDRM

Chromecast Dash

Dash

Widevine

PlayReady

XBox* Smooth StreamPlayReady

AppleTV* HLS Fairplay

GoogleTV* WVM

Smooth Stream

Widevine Classic

PlayReady

FireTV* Smooth StreamPlayReady

SmartTV Alliance (LG, Phillips, Panasonic, Toshiba)* Smooth Stream

WVM

PlayReady

Widevine Classic

Samsung TV* Smooth Stream

WVM

PlayReady

Widevine Classic

HBBTV (1.5+)* DVB Dash PlayReady

Kaltura's API Authentication and Security

Kaltura's API is a REST-based web service accessed over HTTP. REST APIs provide a simple and easy interface for
communication between applications and the Kaltura server. However, this can also be a door for weaknesses in your
applications if you overlook proper security and authentication when designing your applications.

Kaltura was designed with privacy and security standards in mind, while at the same time providing openness of Kaltura’s
technology as an open source platform and providing flexible integration models for open and free applications as well as
highly secured and limitted applications.

The following overview describes the authntication and security model of Kaltura’s API, and how to put it to practice when
implementing Kaltura applications.

Authentication and Security

To establish communication with the Kaltura servers, a client app must have a secret (one of 2 types) coupled with a unique
account ID and a set of permissions.

A valid Kaltura Session (aka KS) is required to interact with the Kaltura API; displaying content, upload media, delete, update or
list.

The KS expiry can be set at session initiation to range from 1 second to 10 years.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

8

Once the KS is acquired, it can be used to interact with content by users for specific pre-set actions, such as uploading,
deletion, updating and listing.

Securing apps content is done by leveraging one or more of the following methods -

Kaltura Session version 2:

Since October 14, 2012 - Kaltura introduced a second version to the KS format that includes encryption of the fields for
protecting the user privacy.

Version 1 (the original format) will continue to be maintained for backward compatibility - the Kaltura server accepts both
version 1 and 2. The Kaltura server generates version 2 by default for publisher accounts created after Oct 2012.
Implementations that generate a KS locally are encouraged to use KS version 2 as well.

Since the new KS format requires encryption of the fields, performing base64 decode on the KS will not reveal its fields (as was
the case with KS version 1).
To decode a KS v2, IT admins and developers who operate self hosted Kaltura servers can use the admin console developer
tools page: https://[KalturaServerURL]/admin_console/index.php/plugin/KalturaInternalToolsPluginSystemHelperAction

The steps for generating a KSv2 are:
1. Gather all the different KS fields and their values:

a. _e – expiry (unix timestamp)
b. _u – user
c. _t – type (KalturaSessionType)
d. Privileges (edit, download, sview, etc.)

2. Compile all fields and URL encode the parameters as a query string. e.g.
 _u=userId&_e=12345678&_t=2&Privileges=sview:1_0xada32as;edit:*

3. Prepend 16 random binary bytes to the fields
4. Prepend the binary SHA1 hash of the string (20 string)
5. Encrypt the string with the SHA1 hash of the account's API secret using AES128/CBC/Zero bytes padding
6. Prepend the KS version and partner ID separated by pipes (e.g. v2|1234|..)
7. Encode the result using Base64
8. Replace + with – and / with _ to make the KS URL-safe

To see an implementation of the KS generation algorithm, refer to the GenerateSession function in the client library of your
choice.

Methods for generating a valid Kaltura Session:
Generate Session Locally - Combine all the above details, and sign them using the shared secret key. This method is
great for reducing callbacks to the server and enhanced security, since the session is generated locally and the secret key
is kept private.
Call session.start - Calling the Kaltura Session.start API to generate a session on the server.
Note: Using the session.start API is discouraged unless secure connection (SSL) is enabled on the account and there are
specific reasons to generate the KS on the server side, using short expiry time that requires synchronizing to the server
time.
Call user.loginByLoginId - This method is using Kaltura Users and their Password instead of partner id and secret key.
NOTE: This method is should be preferred in most cases.
1. It is easier to remember user name and password.
2. Users can be limited to specific roles and permissions (e.g. enabling only upload).
3. Users can be deleted, password changed or demoted in permissions, while the secret keys can't be easily modified.

KS Types

User KS (Non-Authenticated User Session)
A User KS is generated using the USER SECRET.
USER type can only use a subset of the available services that are relevant for a user in the system.
USER KS can invoke services on his entries and his user-data. (e.g. list actions will result in a filtered list according to the
user KS)
Attempting to manipulate other users' data will fail.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

9

Admin KS
ADMIN KS is generated using the ADMIN SECRET.
ADMIN Type is an absolute administrator and can call / perform all actions in the system. Services that use this type of
session are:

Services that expose list of entries / users that belong to different users
Services that allow to update other user's data
Services that delete data.

An admin KS should never reach the browser. By letting users access an admin KS they will be able to cause changes not
limited to their own content.
An admin KS ignores any privilage restirctions.

User Roles & Permissions (Authenticated User Session)
Allow more advanced configuration of the access and permissions based on the defined Kaltura User permissions.

How May Session Type Affect API Behavior?

The session type may affect the way that some API calls behave.

Examples:

A media.list call:

With a user session – lists videos owned by the user specified in the KS

With an admin session – lists all entries in the account that match your filter criteria. The list is not filtered for a specific user (unless you

specifically filter by userId).

An update call: If the user specified in a user session is not the owner of content item, the user does not have permission to update the item. You can

override this restriction by specifying special session privileges.

KS Validation on the Server

The Kaltura API servers will validate the KS for:

Check the signature against the secret of the specific publisher account to verify the authenticity of the KS.
Check whether the KS has elapsed or the action limit has been reached.
Check whether the KS was explicitly revoked (by issuing a Kaltura API call to expire a KS).

Once all the KS validations pass, the server will use the KS for:

Determining the account on which an API call should be performed.
Checking which Kaltura API services / actions the user is authorized to perform, and which API objects / properties he's
allowed to view / modify. Based on the Kaltura User permissions.
Choosing the content entities visible to the specific user.
Setting the owning user for the API actions, e.g. any uploaded content will have the user specified in the KS as its owner.

KS Privileges

Session privileges allows applications to limit the user to perform only specific actions.

The privileges in the KS, in general, do not block actions but instead limit some actions to a smaller scope.

For example, passing "sview:{entry ID}" enables the KS to be usable for playing a specific entry.

Any attempt to use that specific KS to play another entry ID will fail, as long as the entry is protected with KS-restriction access
control.

To be certain that the KS passed to player cannot be used for any update actions you can either:

Add "setrole:PLAYBACK_BASE_ROLE" privilege to it, so it will not be allowed to perform any action other than a white-list of
actions needed for the player (such as baseEntry.get, flavorAsset.list etc.).

or

Add "widget:1" privilege to the KS to tell the server that this KS was generated for player use only, which will tell the server

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

10

to make a distinction between a regular USER session and a "PLAYER" session.

You define privileges using a comma-separated list of key-value pairs.

Each key-value pair is a specific privilege:

The key is the name of the privilege.
The value is the object ID to which the privilege applies.

The key-value pair format is the key followed by the value, separated by a colon: key:value

Multiple key-value pairs are separated by commas with no spaces: key:1_value,key:0_value

Multiple parameters in a single value are separated by a slash: key:1_value/0_value,key2:another_value

Some privileges support a wildcard (*) value (for example, edit:*). A wildcard permits the action for any object.

The available privileges (source reference)

Privilege Description Use Case Arguments

edit Allows editing (updating)
an entry. For
example, edit:0_zsadqv3e

Allow a specific user to edit a specific entry that does not
belong to the user.

Expects
entry id or *
for wildcard

sview Allows viewing and
downloading an entry
asset

When implementing pay-per-view with the KS Protected
Access Control, allow access to the blocked video asset after
purchase.

Expects
entry id or *
for wildcard

list
Enables the session to list
for entries that are not
owned by the user. By
default, only admin
session can list all
entries, this privilege
enables it for user
sessions.

Performing entry search on client side, for example a
contribution wizard that allows reuse of entries uploaded by
other users.

Only list:* is
supported
(list with
other
parameters
will be
ingored)

download Allows downloading an
entry asset

Similar to sview. Allow actions that are meant for
downloading, as opposed to streaming for playback. For
example, raw action
(www.kaltura.com/p/1/sp/100/raw/entryId/0_XXXYYYZZ), or
download action
(www.kaltura.com/p/1/sp/100/download/entryId/0_XXXYYYZZ)

Expects
entry id or *
for wildcard

downloadasset
enables the download of
a specific asset / all
assets

Used internally by the server when flavorAsset.getUrl is
called.

asset id or
*

editplaylist Allows editing an entry in
a specific manual playlist

Allow a user to edit a dynamic list of content for a list that is
managed in a manual playlist.

Expects the
id of the
playlist

sviewplaylist Allows viewing an entry in
a manual playlist

Similar to sview. Allow a user to view a dynamic list of
content.

Expects the
id of the
playlist

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

11

edituser Provides a USER KS the
privilege to change the
owner of an Entry

Allow a user to change the owner of content to another user.
Allow an API-based integration to upload content on behalf of
other users.

* to allow
changing
ownership

to any user.
Or specify a

list of
allowed

usernames.
Separate
multiple

usernames
using a
slash (/)

actionslimit
Allows a specific session
to be used for a defined
number of API calls

Allow a session with an exposed KS to be used for a
restricted period. The purpose is to minimize the risk of a
malicious user using the session for prohibited actions.

Expects an
integer

indicating
number of

actions

setrole Allows a specific session
to be used only for a
specific role

Temporarily allow a user to perform an action that is not
normally permitted, without changing the user role.

Expects the
id of the
role to

apply on
the ks

iprestrict
Limits the use of the KS
to a certain IP address Tighter security for content protection (prevent a user from

being able to send the KS to other parties)

Only a
single
address is
allowed

urirestrict Limits the URI of the API
call that the KS can call,
e.g.,urirestrict:/api_v3/*
will be able to call only
api v3 URIs

Used internally by the server in several API calls that return a
URL to the client containing a KS.

A URI
(starting
with /), a
trailing *
indicates it
should be
treated as a
prefix

enableentitlement
 Forces entitlement
checks.

Note: there is a setting on
account level (configured
in the admin console) that
determines the default
entitlement enforcement

Applications like MediaSpace rely on the server to perform
the entitlement checks, so it uses this flag.

Doesn’t
have any
additional
attributes

Privilege Description Use Case Arguments

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

12

disableentitlement Bypasses any entitlement
checks, for example, a
session with this privilege
will be able to access
entries in private
categories that the user is
not a member of

Note: there is a setting on
account level (configured
in the admin console) that
determines the default
entitlement enforcement

Admin applications (e.g. KMC) that work on accounts that
have entitlement enabled by default.

Doesn’t
have any
additional
attributes

disableentitlementforentry
Bypasses entitlement
checks for a given entry
ID. In other words, access
to the given entry will be
allowed even if it belongs
to a private category that
the user is not a member
of

 Sharing an entitlement protected entry.
Only a
single entry
id is allowed
(if more are
needed
multiple
privileges of
this type
can be
chained)

privacycontext
Sets the privacy context
for entitlement checks. See .

enablecategorymoderation
When set, new category
entries that are created
on categories that have
moderation=true will be
created in PENDING
status. Otherwise, they
will be created in ACTIVE
status.

Supports the category moderation flow when entitlement is
not enforced.

No
additional
attributes

reftime A Unix timestamp that is
used as the reference of
relative date fields. For
example, if the API gets a
value of 300 for some
date field, it will be
translated to <reftime>
+ 300 (5 minutes).

When this privilege is not
supplied, the server uses
the current time.

Tests the result of some API call in some timestamp in the
future, can be used to validate the effect of scheduled tasks'
filters.

A Unix
timestamp

preview A limit (in bytes) on the
size of the file that is
returned from the flavor
download action

Used internally by the server when flavorAsset.getUrl is
called on an entry whose access control has preview
restrictions.

size in
bytes

Privilege Description Use Case Arguments

Kaltura’s Entitlement Infrastructure Information Guide 

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

13

sessionid
Can be used to group a
set of KS's together for
invalidation purposes -
when session.end is
called.

With a ks that has
sessionid=X, all other
KS's that have
sessionId=X become
invalid as well.

Applications that create multiple KS's for different uses can
use this privilege to terminate all KS's upon user logoff,
without the need to keep track of them.

An arbitrary
string
identifying
the session

apptoken For a KS that was created
with
appToken.startSession,
this privilege will contain
the app token through
which the KS was
created.

Used mainly for investigation/tracking purposes.

The
apptoken id

Privilege Description Use Case Arguments

Examples are in PHP using the PHP5 Kaltura Client Library:

Never use KalturaSessionType::ADMIN in ks generated for end users.

Allow access to a specific entry Id (limitation is set via Access Control):
Example: allow access to entry id 0_iuasd7 (Read this blog post for use-case):

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "sview:0_iuasd7");

Limit number of action For KS:
Example: limit number of actions to 4:

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "actionslimit:4");

Set Role on the KS:
Example: set role id 2345 on a ks:

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "setrole:2345");

Secured Delivery

Kaltura supports various methods of securing delivery of video streams, as follows:

Progressive download over HTTPS
RTMPE / RTMPTE
Akamai HD Network (chunked/throttled HTTPS)
SWF Verification
IP-linked token authentication

The table below shows the Stream security techniques as these apply differently across devices -

 Delivery Device Player Security Entitlement Encryption
Akamai HD Flash - PC, Android SWF verification IP based token HTTPS
RTMP Flash - PC, Android SWF verification IP based token RTMPE
Progressive All – iOS, Bberry, Flash, etc. IP based token HTTPS
IOS Streaming (HLS)iPhone, iPad IP based token HTTPS

Kaltura’s integrated DRM solutions seamlessly plug in to its existing infrastructure and workflows, protecting customers from
vendor lock-in.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

14

DRM Support

Encrypted video files are generated as additional “flavors” of original asset using Kaltura’s transcoding farm and based on
selected vendor and license policy.

NOTE: Due to licensing requirements, DRM solutions are only available for commercial Kaltura editions (SaaS and On Prem)
and are at additional cost. For more information about DRM and the available DRM solutions, please contact us or contact your
Kaltura Account Manager.

Important Considerations For Application Developers

When not applications are not developer with security in mind, a malicious user can use:

A compromised secret to create a KS at will
A compromised admin KS to cause irreversible harm to your account (such as deleting all content)

In this section, we highlight a number of common and important practices to consider when creating applications that interact
with the Kaltura API.

Authenticated User Privileges override the User Type KS

When you generate a user session KS and specify an ID of a Kaltura Admin User, the KS will allow all the actions included in the
user’s role.

Always Protect your API Secret Keys

Your API Secret Keys (ADMIN and USER) are generated when you create am account. These keys hold global access
permissions to your account and thus should always be kept in secret.

Always prefer local session generation over server session.start.
Prefer User Login over session.start when local KS generation is not possible.
When calling the session.start API request - Make sure the connection between your client and the Kaltura server is
encryoted and secured.
NEVER keep your secret keys in a front-end application (such as Flash or JavaScript). A KS should always be generated on
the server side and then passed to the front-end.
Keep the secret keys in a seperated file with strict file permissions.

Use Admin KS with care

A compromised Admin KS will allow a malicious user to gain full access to the publisher account, leading way to harm.

Use Admin KS in between servers and with secured communication channel.

Prefer Login of Users with Defined Roles and Permissions over Generic Admin KS

Kaltura Users can be assigned a fine grained level of permissions. This allows applications developers to provide a stronger
login and authentication mechanism while not exposing the account secret keys.

Use user.loginByLoginId providing user credentials and your account Id.

Use Widget KS for Anonynous Public Content Playback

The session.startWidgetSession provides an anonymous simple and light KS generation mechanism that does not require a
secret. This type of session can be used to perform READ operations only and only on content that is defined as publicly
available with no Access Control or special permissions.

The Widget KS is perfect for cases where public content needs to be accessed freely and without secured authentication.

[template("cat-subscribe")]

