
Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

1

Creating a Custom Module for MediaSpace
Last Modified on 09/22/2024 5:31 pm IDT

Kaltura MediaSpace Module Structure

A module of MediaSpace is an implementation of MVC web application, based on Zend-
Framework folder structure and naming convention.

This section describes the folder structure of a MediaSpace module including typical
files in each folder.

In the following example, replace "{module}" with the name of your module. Notice
that the replacement should be case-sensitive, so if you see {Module} and your
module's name is test you should replace with Test.

{module}/
 controllers/
 IndexController.php
 models/
 {Module}.php --- the model file of the module, without it the module will not be functional at all
 views/
 scripts/
 index/ --- as the name of the controller we defined
 index.phtml --- view script for indexAction within IndexController
 other.phtml --- view script for otherAction within IndexController
 assets/ --- css, js and images to be used by the module.
 default.ini --- default settings file of the module.
 admin.ini --- settings file of the module to expose configuration options in configuration management UI
 module.info --- information file of the module to present data in configuration management UI

Model Class

The model class in a MediaSpace module is responsible for "declaring" each and every
feature the module extends.

Extending a MediaSpace feature through a module is done by implementing one of the
interfaces (your_KMS_site.mediaspace.kaltura.com/kb/tab/interfaces} that are available
in MediaSpace.

Interfaces

Your model class should implement any of the interfaces, according to the features you
would like to provide through your module.

A basic model class of the 'mymodule' module would look like the following:

class Mymodule_Model_Mymodule extends Kms_Module_BaseModel
{
}

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

2

The abstract class Kms_Module_BaseModel implements 2 interfaces:

Kms_Interface_Model_ViewHook - allows modules to provide their HTML output to be included in core

views of MediaSpace.

Kms_Interface_Access - every module that has a controller must declare the access rules for its

actions to integrate with MediaSpace's roles.

To learn and review up to date interfaces, select the Knowledge Base tab in the MediaSpace Admin and

then select Interfaces.

Additional NameSpaces

If you need to add additional independent classes to your module, you can store them
in one of the following namespaces that MediaSpace includes as part of the auto-
loading process.

Note that you have to keep ZF naming convention so files will be found by the
autoloader.

plugins

services

views/helpers

For example, if you want to add a class which communicates with a 3rd party API (i.e.
service) you should add your file under 'services' folder (in your module).

Your folder/file structure would look like:

https://dyzz9obi78pm5.cloudfront.net/app/image/id/5d5b4987ed121c870b6c0ff1/n/kms-interfaces-crop.png

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

3

{module}/
 controllers/
 ...
 models/
 {module}.php
 views/
 scripts/
 ...
 assets/
 ...
 services/
 Thirdparty.php
 admin.ini
 default.ini
 module.info

Your class name would look like:

class {Module}_Service_Thirdparty
{
}

Note that {Module} should be replaced with the name of your module with the first
character in upper case.

Module Assets

Modules can contain js, css, flv, and image files to be used in their views. The files are
located in the module's 'assets' folder.

To access the files, use a URL of the form:

http://[kms url]/[build number]/[module name]/asset/[file name]

View Hooks

Modules are allowed to add HTML content to different locations in KMS pages.

This capability, in KMS, is called "View Hook" - the ability to hook into an existing view
and adding output to that view.

This is built in a way that KMS invokes (internally) page requests and uses the response
as the HTML that is added in the "core" view script.

A module that implements viewhook must have, at least, the following:

Model class

Declares which view hooks are implemented by the module. For each viewhook - specify which

action and controller of the module should be invoked, and the importance order between other

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

4

modules implementing the same viewhook.

Set access rules for any of the controllers and actions provided by the module.

At least one controller - to expose actions that are invoked as viewhooks.

Relevant view scripts to serve as the output for each of the actions.

