
Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

1

Kaltura's API Authentication and Security
Last Modified on 11/28/2021 3:00 pm IST

Kaltura's API is a REST-based web service accessed over HTTP. REST APIs provide a simple and easy
interface for communication between applications and the Kaltura server. However, this can also be a
door for weaknesses in your applications if you overlook proper security and authentication when
designing your applications.

Kaltura was designed with privacy and security standards in mind, while at the same time providing
openness of Kaltura’s technology as an open source platform and providing flexible integration models for
open and free applications as well as highly secured and limitted applications.

The following overview describes the authntication and security model of Kaltura’s API, and how to put it
to practice when implementing Kaltura applications.

Authentication and Security

To establish communication with the Kaltura servers, a client app must have a secret (one of 2 types)
coupled with a unique account ID and a set of permissions.

A valid Kaltura Session (aka KS) is required to interact with the Kaltura API; displaying content, upload
media, delete, update or list.

The KS expiry can be set at session initiation to range from 1 second to 10 years.

Once the KS is acquired, it can be used to interact with content by users for specific pre-set actions, such
as uploading, deletion, updating and listing.

Securing apps content is done by leveraging one or more of the following methods -

Kaltura Session version 2:

Since October 14, 2012 - Kaltura introduced a second version to the KS format that includes encryption of
the fields for protecting the user privacy.

Version 1 (the original format) will continue to be maintained for backward compatibility - the Kaltura
server accepts both version 1 and 2. The Kaltura server generates version 2 by default for publisher
accounts created after Oct 2012. Implementations that generate a KS locally are encouraged to
use KS version 2 as well.

Since the new KS format requires encryption of the fields, performing base64 decode on the KS will not
reveal its fields (as was the case with KS version 1).
To decode a KS v2, IT admins and developers who operate self hosted Kaltura servers can use the admin
console developer tools page:
https://[KalturaServerURL]/admin_console/index.php/plugin/KalturaInternalToolsPluginSystemHelperAction

The steps for generating a KSv2 are:
1. Gather all the different KS fields and their values:

a. _e – expiry (unix timestamp)
b. _u – user
c. _t – type (KalturaSessionType)
d. Privileges (edit, download, sview, etc.)

https://developer.kaltura.com/api-docs/#/KalturaSessionType

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

2

2. Compile all fields and URL encode the parameters as a query string. e.g.
 _u=userId&_e=12345678&_t=2&Privileges=sview:1_0xada32as;edit:*

3. Prepend 16 random binary bytes to the fields
4. Prepend the binary SHA1 hash of the string (20 string)
5. Encrypt the string with the SHA1 hash of the account's API secret using AES128/CBC/Zero bytes

padding
6. Prepend the KS version and partner ID separated by pipes (e.g. v2|1234|..)
7. Encode the result using Base64
8. Replace + with – and / with _ to make the KS URL-safe

To see an implementation of the KS generation algorithm, refer to the GenerateSession function in the
client library of your choice.

Methods for generating a valid Kaltura Session:
Generate Session Locally - Combine all the above details, and sign them using the shared secret
key. This method is great for reducing callbacks to the server and enhanced security, since the
session is generated locally and the secret key is kept private.
Call session.start - Calling the Kaltura Session.start API to generate a session on the server.
Note: Using the session.start API is discouraged unless secure connection (SSL) is enabled on the
account and there are specific reasons to generate the KS on the server side, using short expiry time
that requires synchronizing to the server time.
Call user.loginByLoginId - This method is using Kaltura Users and their Password instead of partner
id and secret key.
NOTE: This method is should be preferred in most cases.
1. It is easier to remember user name and password.
2. Users can be limited to specific roles and permissions (e.g. enabling only upload).
3. Users can be deleted, password changed or demoted in permissions, while the secret keys can't be
easily modified.

KS Types

User KS (Non-Authenticated User Session)
A User KS is generated using the USER SECRET.
USER type can only use a subset of the available services that are relevant for a user in the system.
USER KS can invoke services on his entries and his user-data. (e.g. list actions will result in a filtered
list according to the user KS)
Attempting to manipulate other users' data will fail.

Admin KS
ADMIN KS is generated using the ADMIN SECRET.
ADMIN Type is an absolute administrator and can call / perform all actions in the system. Services that
use this type of session are:

Services that expose list of entries / users that belong to different users
Services that allow to update other user's data
Services that delete data.

An admin KS should never reach the browser. By letting users access an admin KS they will be able to

http://www.kaltura.com/api_v3/testme/client-libs.php

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

3

cause changes not limited to their own content.
An admin KS ignores any privilage restirctions.

User Roles & Permissions (Authenticated User Session)
Allow more advanced configuration of the access and permissions based on the defined Kaltura User
permissions.

How May Session Type Affect API Behavior?

The session type may affect the way that some API calls behave.

Examples:

A media.list call:

With a user session – lists videos owned by the user specified in the KS

With an admin session – lists all entries in the account that match your filter criteria. The list is not filtered for a specific

user (unless you specifically filter by userId).

An update call: If the user specified in a user session is not the owner of content item, the user does not have permission to

update the item. You can override this restriction by specifying special session privileges.

KS Validation on the Server

The Kaltura API servers will validate the KS for:

Check the signature against the secret of the specific publisher account to verify the authenticity of
the KS.
Check whether the KS has elapsed or the action limit has been reached.
Check whether the KS was explicitly revoked (by issuing a Kaltura API call to expire a KS).

Once all the KS validations pass, the server will use the KS for:

Determining the account on which an API call should be performed.
Checking which Kaltura API services / actions the user is authorized to perform, and which API objects
/ properties he's allowed to view / modify. Based on the Kaltura User permissions.
Choosing the content entities visible to the specific user.
Setting the owning user for the API actions, e.g. any uploaded content will have the user specified in
the KS as its owner.

KS Privileges

Session privileges allows applications to limit the user to perform only specific actions.

The privileges in the KS, in general, do not block actions but instead limit some actions to a smaller scope.

For example, passing "sview:{entry ID}" enables the KS to be usable for playing a specific entry.

Any attempt to use that specific KS to play another entry ID will fail, as long as the entry is protected with
KS-restriction access control.

To be certain that the KS passed to player cannot be used for any update actions you can either:

Add "setrole:PLAYBACK_BASE_ROLE" privilege to it, so it will not be allowed to perform any action

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

4

other than a white-list of actions needed for the player (such as baseEntry.get, flavorAsset.list etc.).

or

Add "widget:1" privilege to the KS to tell the server that this KS was generated for player use only,
which will tell the server to make a distinction between a regular USER session and a "PLAYER"
session.

You define privileges using a comma-separated list of key-value pairs.

Each key-value pair is a specific privilege:

The key is the name of the privilege.
The value is the object ID to which the privilege applies.

The key-value pair format is the key followed by the value, separated by a colon: key:value

Multiple key-value pairs are separated by commas with no spaces: key:1_value,key:0_value

Multiple parameters in a single value are separated by a slash: key:1_value/0_value,key2:another_value

Some privileges support a wildcard (*) value (for example, edit:*). A wildcard permits the action for any
object.

The available privileges (source reference)

Privilege Description Use Case

edit Allows editing (updating)
an entry. For
example, edit:0_zsadqv3e

Allow a specific user to edit a specific entry that does not
belong to the user.

sview Allows viewing and
downloading an entry
asset

When implementing pay-per-view with the KS Protected
Access Control, allow access to the blocked video asset after
purchase.

list
Enables the session to list for

entries that are not owned by

the user. By default, only

admin session can list all

entries, this privilege enables it

for user sessions.

Performing entry search on client side, for example a
contribution wizard that allows reuse of entries uploaded by
other users.

download Allows downloading an
entry asset

Similar to sview. Allow actions that are meant for
downloading, as opposed to streaming for playback. For
example, raw action
(www.kaltura.com/p/1/sp/100/raw/entryId/0_XXXYYYZZ), or
download action
(www.kaltura.com/p/1/sp/100/download/entryId/0_XXXYYYZZ)

downloadasset
enables the download of a

specific asset / all assets
Used internally by the server when flavorAsset.getUrl is
called.

https://github.com/kaltura/server/blob/master/alpha/apps/kaltura/lib/request/kSessionBase.class.php#L26

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

5

called.

editplaylist Allows editing an entry in
a specific manual playlist

Allow a user to edit a dynamic list of content for a list that is
managed in a manual playlist.

sviewplaylist Allows viewing an entry in
a manual playlist

Similar to sview. Allow a user to view a dynamic list of
content.

edituser Provides a USER KS the
privilege to change the
owner of an Entry

Allow a user to change the owner of content to another user.
Allow an API-based integration to upload content on behalf of
other users.

actionslimit
Allows a specific session
to be used for a defined
number of API calls

Allow a session with an exposed KS to be used for a
restricted period. The purpose is to minimize the risk of a
malicious user using the session for prohibited actions.

setrole Allows a specific session
to be used only for a
specific role

Temporarily allow a user to perform an action that is not
normally permitted, without changing the user role.

iprestrict
Limits the use of the KS to a

certain IP address
Tighter security for content protection (prevent a user from
being able to send the KS to other parties)

urirestrict Limits the URI of the API call

that the KS can call,

e.g.,urirestrict:/api_v3/* will be

able to call only api v3 URIs

Used internally by the server in several API calls that return a URL to the

client containing a KS.

enableentitlement
 Forces entitlement checks.

Note: there is a setting on
account level (configured

Applications like MediaSpace rely on the server to perform
the entitlement checks, so it uses this flag.

Privilege Description Use Case

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

6

account level (configured
in the admin console) that
determines the default
entitlement enforcement

disableentitlement Bypasses any entitlement
checks, for example, a
session with this privilege
will be able to access
entries in private
categories that the user is
not a member of

Note: there is a setting on
account level (configured
in the admin console) that
determines the default
entitlement enforcement

Admin applications (e.g. KMC) that work on accounts that
have entitlement enabled by default.

disableentitlementforentry
Bypasses entitlement checks

for a given entry ID. In other

words, access to the given

entry will be allowed even if it

belongs to a private category

that the user is not a member

of

 Sharing an entitlement protected entry.

privacycontext
Sets the privacy context for

entitlement checks.
 See

enablecategorymoderation
When set, new category entries

that are created on categories

that have moderation=true will

be created in PENDING status.

 Otherwise, they will be created

in ACTIVE status.

Supports the category moderation flow when entitlement is not enforced.

reftime A Unix timestamp that is used

as the reference of relative

date fields. For example, if the

API gets a value of 300 for some

date field, it will be translated

to <reftime> + 300 (5 minutes).

When this privilege is not
supplied, the server uses
the current time.

Tests the result of some API call in some timestamp in the future, can be

used to validate the effect of scheduled tasks' filters.

preview A limit (in bytes) on the size of Used internally by the server when flavorAsset.getUrl is called on an entry

Privilege Description Use Case

Kaltura’s Entitlement Infrastructure Information Guide

https://dyzz9obi78pm5.cloudfront.net/app/image/id/5d78734b6e121c5c707a3efe/n/kaltura-entitlement-infrastructure-information-guide.pdf

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

7

the file that is returned from

the flavor download action

whose access control has preview restrictions.

sessionid
Can be used to group a
set of KS's together for
invalidation purposes -
when session.end is
called.

With a ks that has
sessionid=X, all other
KS's that have
sessionId=X become
invalid as well.

Applications that create multiple KS's for different uses can use this

privilege to terminate all KS's upon user logoff, without the need to keep

track of them.

apptoken For a KS that was created with

appToken.startSession, this

privilege will contain the app

token through which the KS

was created.

Used mainly for investigation/tracking purposes.

Privilege Description Use Case

Examples are in PHP using the PHP5 Kaltura Client Library:

Never use KalturaSessionType::ADMIN in ks generated for end users.

Allow access to a specific entry Id (limitation is set via Access Control):
Example: allow access to entry id 0_iuasd7 (Read this blog post for use-case):

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "sview:0_iuasd7");

Limit number of action For KS:
Example: limit number of actions to 4:

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "actionslimit:4");

Set Role on the KS:
Example: set role id 2345 on a ks:

$ks = $client->session->start ($userSecret, "myUser", KalturaSessionType::USER, $partnerID , null, "setrole:2345");

Secured Delivery

Kaltura supports various methods of securing delivery of video streams, as follows:

Progressive download over HTTPS
RTMPE / RTMPTE
Akamai HD Network (chunked/throttled HTTPS)
SWF Verification
IP-linked token authentication

The table below shows the Stream security techniques as these apply differently across devices -

http://blog.kaltura.org/create-ks-protected-videos-with-free-preview

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

8

 Delivery Device Player Security Entitlement Encryption

Akamai HD Flash - PC, Android SWF verification IP based token HTTPS

RTMP Flash - PC, Android SWF verification IP based token RTMPE

Progressive All – iOS, Bberry, Flash, etc. IP based token HTTPS

IOS Streaming (HLS)iPhone, iPad IP based token HTTPS

Kaltura’s integrated DRM solutions seamlessly plug in to its existing infrastructure and workflows,
protecting customers from vendor lock-in.

DRM Support

Encrypted video files are generated as additional “flavors” of original asset using Kaltura’s transcoding
farm and based on selected vendor and license policy.

NOTE: Due to licensing requirements, DRM solutions are only available for commercial Kaltura editions
(SaaS and On Prem) and are at additional cost. For more information about DRM and the available DRM
solutions, please contact us or contact your Kaltura Account Manager.

Important Considerations For Application Developers

When not applications are not developer with security in mind, a malicious user can use:

A compromised secret to create a KS at will
A compromised admin KS to cause irreversible harm to your account (such as deleting all content)

In this section, we highlight a number of common and important practices to consider when creating
applications that interact with the Kaltura API.

Authenticated User Privileges override the User Type KS

When you generate a user session KS and specify an ID of a Kaltura Admin User, the KS will allow all the
actions included in the user’s role.

Always Protect your API Secret Keys

Your API Secret Keys (ADMIN and USER) are generated when you create am account. These keys hold

https://dyzz9obi78pm5.cloudfront.net/app/image/id/5d5b48d9ed121c870b6c0ead/n/drm-metadata.jpg
http://corp.kaltura.com/company/contact-us

Copyright ©️ 2024 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

9

global access permissions to your account and thus should always be kept in secret.

Always prefer local session generation over server session.start.
Prefer User Login over session.start when local KS generation is not possible.
When calling the session.start API request - Make sure the connection between your client and the
Kaltura server is encryoted and secured.
NEVER keep your secret keys in a front-end application (such as Flash or JavaScript). A KS should
always be generated on the server side and then passed to the front-end.
Keep the secret keys in a seperated file with strict file permissions.

Use Admin KS with care

A compromised Admin KS will allow a malicious user to gain full access to the publisher account, leading
way to harm.

Use Admin KS in between servers and with secured communication channel.

Prefer Login of Users with Defined Roles and Permissions over Generic Admin KS

Kaltura Users can be assigned a fine grained level of permissions. This allows applications developers to
provide a stronger login and authentication mechanism while not exposing the account secret keys.

Use user.loginByLoginId providing user credentials and your account Id.

Use Widget KS for Anonynous Public Content Playback

The session.startWidgetSession provides an anonymous simple and light KS generation mechanism that
does not require a secret. This type of session can be used to perform READ operations only and only on
content that is defined as publicly available with no Access Control or special permissions.

The Widget KS is perfect for cases where public content needs to be accessed freely and without secured
authentication.

