
Kaltura Player Toolkit Theme, Skin and Plugins Guide

This document provides a detailed walk through on skinning the Kaltura Player v2,
starting with architecture overview, why Kaltura leads with HTML5, and a detailed
description of how to include and build custom skin resources. The contents of this
document are targeted for designers with a technical understanding of web front-end
(specifically HTML5, CSS and JavaScript).

A complimentary document will detail skinning and configuration with the friendly
HTML5 player studio user interface.

For a listing of all the relevant player APIs see player.kaltura.com/docs/api

Kaltura Player v2 Toolkit Architecture Diagram

The following diagram visualizes the architecture of Kaltura Player v2 Toolkit, and
highlights its flexibility and robustness across platforms and devices:

As the diagram outlines, we can leverage native components for iOS and Android in
conjunction with the HTML5 runtime and Adobe flash or Microsoft Silverlight plugins, to
transcend platform limitations across devices and browsers, while delivering the full
Player v2 Toolkit experience.

Why Native?

What advantages are gained by going native? Here is a feature list that will help explain
the advantages of Kaltura Player Toolkit in native environments:

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

1

 iOS
WebView

iOS
Native
with
Kaltura
Player
Toolkit

Android
WebView

Android with
Kaltura
Player
Toolkit

CSS Skin Not
supported on
iPhone

SupportedSupported Supported

JS Plugins Supported SupportedSupported Supported

Apple HLS
Playback

Supported SupportedBroken
support
across
fragmented
platform

Supported,
with
consistent
experience
across
android
versions.

MPEG-Dash Unsupported,
dependent
on Apple.

Supported
via
partners
software
players

No support in
android <
4.1, Android
Chrome
supports in
webview

Supported
via partners
software
players

ChromeCastUnsupported SupportedUnsupported Supported

AirPlay Supported SupportedUnsupported Unsupported

AutoPlay Unsupported SupportedUnsupported Supported

HTML5
Overlays

Not
supported on
iPhone

Supported
on iPhone
and iPad

Broken
support
across
fragmented
platform

Supported

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

2

Fullscreen Only native
controls in
true
fullscreen

Supports
custom
HTML
controls in
fullscreen

No support in
android <
4.1, Android
Chrome
supports
fullscreen.

Supports
custom
HTML
controls in
fullscreen

Volume
Control

Only device
level volume
control

Supports
in-player
ui for
volume
control

Only device
level volume
control

Supports in-
player ui for
volume
control

Ads Native
controls on
iPhone, ads
can be
skipped ui
does not
reflect “ad
state”

Full
Support
via HTML
controls
that
reflect ad
playback

No support in
android <
4.1, Android
Chrome
supports
HTML
controls

Supported,
with
consistent
experience
across
android
versions.

Offline
Playback

Unsupported SupportedUnsupported Supported

DRM and
Content
Controls

Unsupported Via
Partners
and part
of offering

Unsupported,
outside of
latest version
of Android
Chrome with
Encrypted
Media
Extension
(EME) w/
Widevine &
ClearText

Via partners
and part of
offering.

Getting Started with Skinning a Kaltura Player

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

3

The following steps outline a basic "hello world" approach for CSS based player skin, and
setup a player development environment:

1. Login into your Kaltura Management Console (KMC) and open the Studio's player list.
2. Create a "new" player in the "Universal Studio" and give it a title such as "Player V2

Custom Skin".
3. Select Content from the Actions dropdown menu for the v2 Player you created.
4. Select "Preview and embed" from the Actions menu, for an arbitrary entry from the

content list,
5. In the Preview and embed window, select Advanced Options and then select Dynamic

Embed.
6. Copy the respective code.
7. Paste the code into a page hosted on a webserver (locally or remote). Note you

should access the page via a web server with http:// not file://
You should now have a page that looks like this:

8. Create a new file called "customSkin.css" in the same folder. For starters this will just

change the play button to a jack-o-lantern.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

4

9. /* clear out the font based icon */
.largePlayBtn.icon-play:before {
 content: "";
}
/* replace play button with jack-o-lantern: */
.mwPlayerContainer .largePlayBtn, .mwPlayerContainer .largePlayBtn:hover{
 background-image: url('http://0.tqn.com/d/webclipart/1/0/o/s/4/Jack-O-Lantern2.png');
 background-size: 93px 100px;
 width:93px;
 height:100px;
 padding: 0px;
 margin:-50px;
}

10. Save the file.
11. Point the player to the css file with the "IframeCustomPluginCss1" configuration

option bold in the sample code:

12. Now load the page in your browser. You should get:

Because of the robust CSS based layout support, many skins can be built almost entirely
using CSS. You can inspect the player to see the CSS target names of various player
components.
When moving to production you should host your CSS file in an absolute URL and
reference it from the same config line. In the near future we plan to support hosting all
player related assets within Kaltura.

Edit UIVars, Adding CSS or JS to JSON config with the Universal

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

5

Studio

After you are satisfied with your CSS adjustments and have pushed your CSS or
JavaScript to a CDN location, you can use the Universal Studio to quickly insert your
custom CSS & JS into the JSON config. Within the Universal Studio go to the "Plugins ->
uiVars" section, and then use the same keys IframeCustomPluginCss1 &
IframeCustomPluginJs1 to insert the values:

JSON Config vs uiConf Config

The Kaltura Player v2 principal configuration format is JSON. Older players used uiConf
xml. The Kaltura Player v2 can convert uiConf xml on the fly to the JSON format that is
uses, but you won't have as fine grain control over layout plugins configuration using the
converter. Going forward, it is best to use the JSON format to configure your v2 player.
A uiConf that broadly enables features with default configuration looks like this:

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

6

{
 "plugins":{
 "topBarContainer": {},
 "titleLabel": {},
 "controlBarContainer": {
 "hover": true
 },
 "largePlayBtn": {},
 "scrubber": {},
 "playPauseBtn": {},
 "volumeControl": {},
 "fullScreenBtn": {},
 "durationLabel": {},
 "currentTimeLabel": {},
 "sourceSelector": {},
 "closedCaptions": {},
 "watermark": {
 "cssClass": "topLeft",
 "img": "http://www.kaltura.com/content/uiconf/kaltura/kmc/appstudio/kdp3/exampleWatermark.png"
 },
 "logo": {},
 "infoScreen": {}
 },
 "uiVars":[{
 "key":"autoPlay",
 "value":false,
 "overrideFlashvar":false

 }],
 "layout":{
 "skin": "kdark",
 "cssFiles":[]
 }
}

Custom plugins can be written directly into the JSON with the same external resource
attributes. These are:
iframeHTML5Js1 = location of custom javascript resource
iframeHTML5Css = location of custom css resource

Editing JSON locally

During development it can be beneficial to load and edit a local JSON file. To do this
simply use the "jsonConfig" var and a local request. Assuming you saved the above json
example as myplayer.json

How Can I Update server side jsonConfig Today?

Using the API, you can update the the JSON config with the player version utility. The
Universal Player Studio also updates these JSON configuration files directly.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

7

Adding a New Component to Your Player

To add a JavaScript component to the player you can use the "iframeHTML5Js1" attribute
to add a JS file to your player. For example:

NOTE: Flashvar based resoruce includes will only work on relative paths. You should
save absolute external resource URLs to your configuration file for them to work in your
pdocution players. Absolute URLs are also important in production players, so that your
component or plugin wil work wherever your player is embeded.

This sample component file adds a logo to the control bar, Its configuration options are
defined by the "defaultConfig" set.

Please note the mw.kalturaPluginWrapper(function(){ wrapping. This is needed for
any external plugin because of how external resources are opertunitily loaded.

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

8

mw.kalturaPluginWrapper(function(){

 mw.PluginManager.add('myComponent', mw.KBaseComponent.extend({
 defaultConfig: {
 parent: "controlsContainer", // the container for the button
 order: 41, // the display order (based on layout)
 displayImportance: 'low', // the display importance, determines when the item is removed from DOM
 align: "right", // the alignment of the button

 cssClass: "kaltura-logo", // the css name of the logo
 href: 'http://www.kaltura.com', // the link for the logo
 title: 'Kaltura', // title
 img: null // image
 },
 isSafeEnviornment:function(){
 // any runtime checks to determine the plugin can be active
 // for example if you need to check if this partner has a key against your service:
 var deferred = $.Deferred();
 $.ajax (myAjaxRequst, function(data){
 deferred.resolve(!!data.isUserAllowed);
 });
 return deferred.promise();
 },
 setup: function(){
 // The place to set any of your player bindings like:
 this.bind('playerReady', function(){
 // do something on player ready
 });
 },
 getComponent: function() {
 if(!this.$el) {
 var $img = [];
 if(this.getConfig('img')){
 $img = $('')
 .attr({
 alt: this.getConfig('title'),
 src: this.getConfig('img')
 });
 }
 this.$el = $('
')
 .addClass (this.getCssClass())
 .append(
 $('')
 .attr({
 'title': this.getConfig('title'),
 'target': '_blank',
 'href': this.getConfig('href')
 }).append($img)
);
 }
 return this.$el;
 }
 }));

});

You can see all sort of components in the code repository. Remember the entire Player
v2 Toolkit is open source ;)

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

9

Player States CSS

CSS states are CSS classes that are added to the outer most interface element at given
player state. These are very useful for quickly building a given look and feel at a given
player state, without involving a lot of complicated javascript bindings.

.fullscreen - The player in fullscreen

.touch - Indicates that we're currently on touch device.

.player-out - The player is focus out (I use it to hide the control bar).

.start-state - The player is on start screen (before user clicked play).

.load-state - The player is in loading state (on startup, change media).

.play-state - The player is playing.

.pause-state - The player was paused.

.end-state - The player is on end screen (video completed)

.adplay-state - The player is currently playing an ad.

.disabled - The current component is "disabled" i.e the click or touch binding for this
button is not active.
.size-tiny – less than 300px
.size-small – less than 450px
.size-medium – less than 700px
.size-large – more than 700px

CSS States Usage Examples

On screen redBox HTML

In the CSS files
.redBox {
 width: 100px;
 height: 100px;
 background-color: red;
}

To hide the box when the mouse cursor is over the player
.player-out .redBox { display: none; }

As default, have your UI visible, and when it should be hidden use the .player-out class.

To increase the box size when player is in fullscreen state
.fullscreen .redBox { width: 300px; height: 300px; }

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

10

To change the color to of the box to green when the video is paused
.pause-state .redBox { background-color: green; }

CSS Animations Between Player States

You can also make use of CSS animations to transition between player states.

To transition the redBox box size transformation when entering fullscreen state

.redBox { transition: width 0.3s ease-in-out, height 0.3s ease-in-out;}

.fullscreen .redBox { width: 300px; height: 300px; }

Template Magic

Almost all plugin configuration options that end up being displayed on the player support
templetized values. You have very powerful mechanisms at your disposal to create
highly custom experiences with minimal effort. Let's take a simple example of displaying
the view count. Here we have simply updated the title button text for its default "
{mediaProxy.entry.name}" to "{mediaProxy.entry.name} has
{mediaProxy.entry.views} views" Templates work by substituting data mappings against
the current player / content instance.

Universal Studio

Read about the Player Universal Studio at length in the Universal Studio Information
Guide.

[template("cat-subscribe")]

Copyright ©️ 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

11

