.+~ kaltura

Creating a Custom Module for MediaSpace

Last Modified on 08/11/2020 5:00 pm IDT

Kaltura MediaSpace Module Structure

A module of MediaSpace is an implementation of MVC web application, based on Zend-Framework folder structure and

naming convention.
This section describes the folder structure of a MediaSpace module including typical files in each folder.

In the following example, replace "{module}" with the name of your module. Notice that the replacement should be case-
sensitive, so if you see {Module} and your module's name is test you should replace with Test.

{module}/
controllers/
IndexController.php
models/
{Module}.php --- the model file of the module, without it the module will not be fu
nctional at all
views/
scripts/
index/ --- as the name of the controller we defined
index.phtml --- view script for indexAction within IndexController
other.phtml --- view script for otherAction within IndexController
assets/ --- css, Jjs and images to be used by the module.
default.ini --- default settings file of the module.
admin.ini --- settings file of the module to expose configuration options in configuration
management UI
module.info --- information file of the module to present data in configuration management
UI
Model Class

The model class in a MediaSpace module is responsible for "declaring" each and every feature the module extends.

Extending a MediaSpace feature through a module is done by implementing one of the interfaces
(your_KMS_site.mediaspace.kaltura.com/kb/tab/interfaces} that are available in MediaSpace.

Interfaces

Your model class should implement any of the interfaces, according to the features you would like to provide through

your module.

A basic model class of the 'mymodule’ module would look like the following:

class Mymodule Model Mymodule extends Kms_Module BaseModel

{
}

The abstract class Kms_Module_BaseModel implements 2 interfaces:

e Kms_Interface_Model_ViewHook - allows modules to provide their HTML output to be included in core views of

Copyright © 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

= kaltura

MediaSpace.

® Kms_Interface_Access - every module that has a controller must declare the access rules for its actions to integrate with
MediaSpace's roles.

To learn and review up to date interfaces, select the Knowledge Base tab in the MediaSpace Admin and then select Interfaces.

MANAGE CONFIGURATION MANAGE USERS KNOWLEDGE BASE CLEARTHECACHE = GO TO SITE

Knowledge base

General

Kms_interface Deplovable

Interfaces

e Interface tofor modules to performs checks before deployment - ifthey can be installed or enabled
Viewhooks this in addition to any enecks that KIS might do by tself

~——————————————— Implementihis interface if your module should be installedienabled only if certin conditions are met -
Viewfiles for example, If certain features are enabled for the parner.

Internal

Kms Interface Contextual Role

interface to allow modules determine contextual role by channel and user

Kms Interface Access

Interface for access rules for modules.
Every module thatimplements a controller with actions must declare its access rules, otherwise the actions will not be usable

Additional NameSpaces

If you need to add additional independent classes to your module, you can store them in one of the following
namespaces that MediaSpace includes as part of the auto-loading process.

Note that you have to keep ZF naming convention so files will be found by the autoloader.

e plugins
® services

e views/helpers

For example, if you want to add a class which communicates with a 3rd party API (i.e. service) you should add your file
under 'services' folder (in your module).

Your folder/file structure would look like:

{module}/

controllers/

models/
{module} .php
views/

scripts/
assets/

services/
Thirdparty.php

admin.ini

default.ini

module.info

Your class name would look like:

class {Module} Service Thirdparty
{
}

Copyright © 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

= kaltura

Note that {Module} should be replaced with the name of your module with the first character in upper case.

Module Assets

Modules can contain js, css, flv, and image files to be used in their views. The files are located in the module's 'assets'
folder.

To access the files, use a URL of the form:

http://[kms url]/[build number]/[module name]/asset/[file name]

View Hooks

Modules are allowed to add HTML content to different locations in KMS pages.
This capability, in KMS, is called "View Hook" - the ability to hook into an existing view and adding output to that view.

This is built in a way that KMS invokes (internally) page requests and uses the response as the HTML that is added in

the "core" view script.
A module that implements viewhook must have, at least, the following:

® Modelclass
o Declares which view hooks are implemented by the module. For each viewhook - specify which action and controller
of the module should be invoked, and the importance order between other modules implementing the same
viewhook.
o Setaccess rules for any of the controllers and actions provided by the module.
® At least one controller - to expose actions that are invoked as viewhooks.

® Relevant view scripts to serve as the output for each of the actions.

Copyright © 2019 Kaltura Inc. All Rights Reserved. Designated trademarks and brands are the property of their respective owners. Use of this document
constitutes acceptance of the Kaltura Terms of Use and Privacy Policy.

